三维可压缩Euler-Navier-Stokes两相流模型的低马赫数极限

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Hakho Hong, Kwang-Hyon Jong
{"title":"三维可压缩Euler-Navier-Stokes两相流模型的低马赫数极限","authors":"Hakho Hong,&nbsp;Kwang-Hyon Jong","doi":"10.1016/j.nonrwa.2024.104267","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the two-phase flow model consisting of the compressible isothermal Euler equations coupled with the compressible isentropic Navier-Stokes equations through a drag forcing term.For the 3-D Cauchy problem,we rigorously justify the low Mach number limit, which means that the solutions converge to that of a two-phase flow model coupled with the compressible Euler equations and the incom pressible Navier-Stokes equations locally and globally in time as Mach number goes to zero.</div><div>MSC 2020:35Q30,35B35,35L6576D3374J40</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104267"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Mach number limit for the compressible Euler-Navier-Stokes two-phase flow model in R3\",\"authors\":\"Hakho Hong,&nbsp;Kwang-Hyon Jong\",\"doi\":\"10.1016/j.nonrwa.2024.104267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the two-phase flow model consisting of the compressible isothermal Euler equations coupled with the compressible isentropic Navier-Stokes equations through a drag forcing term.For the 3-D Cauchy problem,we rigorously justify the low Mach number limit, which means that the solutions converge to that of a two-phase flow model coupled with the compressible Euler equations and the incom pressible Navier-Stokes equations locally and globally in time as Mach number goes to zero.</div><div>MSC 2020:35Q30,35B35,35L6576D3374J40</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"84 \",\"pages\":\"Article 104267\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824002062\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002062","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由可压缩等温欧拉方程和可压缩等熵纳维-斯托克斯方程通过阻力强迫项耦合而成的两相流模型。对于三维柯西问题,我们严格证明了低马赫数极限,这意味着当马赫数趋于零时,解在局部和全局上收敛于可压缩欧拉方程和不可压缩纳维-斯托克斯方程耦合的两相流模型的解。MSC 2020:35Q30 35 b35 35 l6576d3374j40
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Mach number limit for the compressible Euler-Navier-Stokes two-phase flow model in R3
This paper is concerned with the two-phase flow model consisting of the compressible isothermal Euler equations coupled with the compressible isentropic Navier-Stokes equations through a drag forcing term.For the 3-D Cauchy problem,we rigorously justify the low Mach number limit, which means that the solutions converge to that of a two-phase flow model coupled with the compressible Euler equations and the incom pressible Navier-Stokes equations locally and globally in time as Mach number goes to zero.
MSC 2020:35Q30,35B35,35L6576D3374J40
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信