{"title":"A shooting approach for some semilinear scalar field equation with a Dirac-like potential in one-dimension","authors":"Yohei Sato","doi":"10.1016/j.nonrwa.2024.104297","DOIUrl":null,"url":null,"abstract":"<div><div>We study the following semilinear scalar field equation in one-dimension <span><span><span><math><mrow><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>+</mo><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mtext>in</mtext><mi>R</mi><mo>,</mo><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>→</mo><mn>0</mn><mspace></mspace><mspace></mspace><mtext>as</mtext><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi><mo>.</mo></mrow></math></span></span></span>Here, <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> satisfies <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>μ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>μ</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></msup><mo>≤</mo><mrow><mo>|</mo><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>μ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>μ</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span>, and <span><math><mi>f</mi></math></span> is a locally Lipschitz function with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> that is supposed as general condition as possible. Then there exists <span><math><mrow><mi>γ</mi><mrow><mo>(</mo><mo>≥</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> that is explicitly determined from <span><math><mi>f</mi></math></span>, and we prove the following. If <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mi>γ</mi></mrow></math></span>, then there exist no non-trivial solutions for large <span><math><mi>μ</mi></math></span>. If <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mi>λ</mi></mrow></math></span>, then there exists at least a positive solution for large <span><math><mi>μ</mi></math></span>. If <span><math><mrow><mi>γ</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mi>λ</mi></mrow></math></span> and <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, then there exist at least two positive solutions for large <span><math><mi>μ</mi></math></span>. In the proofs, we use a shooting method from <span><math><mrow><mo>±</mo><mi>∞</mi></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104297"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824002360","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A shooting approach for some semilinear scalar field equation with a Dirac-like potential in one-dimension
We study the following semilinear scalar field equation in one-dimension Here, , satisfies , and is a locally Lipschitz function with that is supposed as general condition as possible. Then there exists that is explicitly determined from , and we prove the following. If , then there exist no non-trivial solutions for large . If , then there exists at least a positive solution for large . If and , then there exist at least two positive solutions for large . In the proofs, we use a shooting method from .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.