锗量子点纳米系统中激子态的光吸收

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Serhii I. Pokutnii
{"title":"锗量子点纳米系统中激子态的光吸收","authors":"Serhii I. Pokutnii","doi":"10.1016/j.chphi.2025.100839","DOIUrl":null,"url":null,"abstract":"<div><div>A theory of optical absorption on surface exciton states with spatially separated electrons and holes has been developed (the hole moves in a germanium quantum dot, and the electron is localized at the spherical interface of the silicon quantum dot matrix). A gigantic increase in polarizabilities (by five orders of magnitude) and absorption cross- sections (by eleven orders of magnitude) due to optical interband transitions between these exciton states has been theoretically predicted. This opens up the possibility of applied nanosystems as new highly absorbing nanomaterials in the infrared range.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100839"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical absorption on exciton states in nanosystems with germanium quantum dots\",\"authors\":\"Serhii I. Pokutnii\",\"doi\":\"10.1016/j.chphi.2025.100839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A theory of optical absorption on surface exciton states with spatially separated electrons and holes has been developed (the hole moves in a germanium quantum dot, and the electron is localized at the spherical interface of the silicon quantum dot matrix). A gigantic increase in polarizabilities (by five orders of magnitude) and absorption cross- sections (by eleven orders of magnitude) due to optical interband transitions between these exciton states has been theoretically predicted. This opens up the possibility of applied nanosystems as new highly absorbing nanomaterials in the infrared range.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"10 \",\"pages\":\"Article 100839\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

建立了具有空间分离电子和空穴的表面激子态的光吸收理论(空穴在锗量子点中运动,电子定位在硅量子点矩阵的球形界面上)。由于这些激子态之间的光带间跃迁,极化率(5个数量级)和吸收截面(11个数量级)的巨大增加已经在理论上得到了预测。这为纳米系统在红外范围内作为新型高吸收纳米材料的应用开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optical absorption on exciton states in nanosystems with germanium quantum dots

Optical absorption on exciton states in nanosystems with germanium quantum dots
A theory of optical absorption on surface exciton states with spatially separated electrons and holes has been developed (the hole moves in a germanium quantum dot, and the electron is localized at the spherical interface of the silicon quantum dot matrix). A gigantic increase in polarizabilities (by five orders of magnitude) and absorption cross- sections (by eleven orders of magnitude) due to optical interband transitions between these exciton states has been theoretically predicted. This opens up the possibility of applied nanosystems as new highly absorbing nanomaterials in the infrared range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信