芍药黄酮类化合物的分布及植物黄酮类化合物合成相关基因分析

IF 2.2 Q3 GENETICS & HEREDITY
Seungki Lee , Nam-Il Park , Yeri Park , Kweon Heo , Yongsoo Kwon , Eun Sil Kim , Youn Kyoung Son , Kyung Jin Lee , Seung Young Choi , Beom-Soon Choi , Nam-Soo Kim , Ik-Young Choi
{"title":"芍药黄酮类化合物的分布及植物黄酮类化合物合成相关基因分析","authors":"Seungki Lee ,&nbsp;Nam-Il Park ,&nbsp;Yeri Park ,&nbsp;Kweon Heo ,&nbsp;Yongsoo Kwon ,&nbsp;Eun Sil Kim ,&nbsp;Youn Kyoung Son ,&nbsp;Kyung Jin Lee ,&nbsp;Seung Young Choi ,&nbsp;Beom-Soon Choi ,&nbsp;Nam-Soo Kim ,&nbsp;Ik-Young Choi","doi":"10.1016/j.plgene.2025.100490","DOIUrl":null,"url":null,"abstract":"<div><div><em>Paeonia suffriticosa</em> is a woody peony that is an important medicinal plant in Korea, China, and Japan. Flavonoids are a class of polyphenolic secondary metabolites. We analyzed seven flavonoid compounds in various tissues of Korean landrace <em>P. suffriticosa</em>. Of these, flavonols were more abundant compared with other flavonoids in the roots, leaves, and petals, whereas flavones (apigenin and luteolin) were present in low abundance in all tissues. The root tissues generally contained higher flavonoid content compared with the other tissues. Because molecular analyses of the genes involved in flavonoid biosynthesis genes have not been systematically conducted in <em>P. suffriticosa</em>, we performed a transcriptome analysis, which identified 34,629 unigenes in the transcriptome. Our functional matching results using the NCBI Nr and in EMBL-EBI EMBL Interpro databases were similar to those of previous reports in <em>P. suffriticosa</em>. The highest matching species for the annotated genes was <em>V. vinifera,</em> which was corroborated in reports from other <em>Paeonia</em> species. The genes encoding enzymes in the shikimate pathway and aromatic amino acids biosynthesis genes were identified from the transcriptome data. We also identified homologous genes in other <em>Paeonia</em> species as well as Arabidopsis and rice. The number of gene copies varied from one in DHQS and CS to seven to ten in 4CL. Sequence and phylogenetic analyses revealed that several conserved blocks were observed in 4CLs from nonvascular to vascular plants. A <em>CHS</em> analysis revealed that there were at least three homologs of CHSs in the genus <em>Paeonia</em>. The sequences of the catalytic residues, CoA binding sites, and structural activity of the CHSs were conserved from the basal plant of liverwort to vascular flowering plants. In a phylogenetic analysis of CHS and CHI, the CHSs from the major plant lineages formed their own cluster, whereas CHIs from diverse plant lineages were clustered together. Protein sequences were highly conserved among the CHIs within clades, but diverged between clades. Thus, CHSs of each major plant lineage may have evolved independently following divergence, whereas CHIs in each clade in the phylogenetic analysis may have evolved separately from basal plants to angiosperms.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"41 ","pages":"Article 100490"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of flavonoids in Paeonia suffruticosa and analyses of the genes involved in flavonoid biosynthesis in plants\",\"authors\":\"Seungki Lee ,&nbsp;Nam-Il Park ,&nbsp;Yeri Park ,&nbsp;Kweon Heo ,&nbsp;Yongsoo Kwon ,&nbsp;Eun Sil Kim ,&nbsp;Youn Kyoung Son ,&nbsp;Kyung Jin Lee ,&nbsp;Seung Young Choi ,&nbsp;Beom-Soon Choi ,&nbsp;Nam-Soo Kim ,&nbsp;Ik-Young Choi\",\"doi\":\"10.1016/j.plgene.2025.100490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Paeonia suffriticosa</em> is a woody peony that is an important medicinal plant in Korea, China, and Japan. Flavonoids are a class of polyphenolic secondary metabolites. We analyzed seven flavonoid compounds in various tissues of Korean landrace <em>P. suffriticosa</em>. Of these, flavonols were more abundant compared with other flavonoids in the roots, leaves, and petals, whereas flavones (apigenin and luteolin) were present in low abundance in all tissues. The root tissues generally contained higher flavonoid content compared with the other tissues. Because molecular analyses of the genes involved in flavonoid biosynthesis genes have not been systematically conducted in <em>P. suffriticosa</em>, we performed a transcriptome analysis, which identified 34,629 unigenes in the transcriptome. Our functional matching results using the NCBI Nr and in EMBL-EBI EMBL Interpro databases were similar to those of previous reports in <em>P. suffriticosa</em>. The highest matching species for the annotated genes was <em>V. vinifera,</em> which was corroborated in reports from other <em>Paeonia</em> species. The genes encoding enzymes in the shikimate pathway and aromatic amino acids biosynthesis genes were identified from the transcriptome data. We also identified homologous genes in other <em>Paeonia</em> species as well as Arabidopsis and rice. The number of gene copies varied from one in DHQS and CS to seven to ten in 4CL. Sequence and phylogenetic analyses revealed that several conserved blocks were observed in 4CLs from nonvascular to vascular plants. A <em>CHS</em> analysis revealed that there were at least three homologs of CHSs in the genus <em>Paeonia</em>. The sequences of the catalytic residues, CoA binding sites, and structural activity of the CHSs were conserved from the basal plant of liverwort to vascular flowering plants. In a phylogenetic analysis of CHS and CHI, the CHSs from the major plant lineages formed their own cluster, whereas CHIs from diverse plant lineages were clustered together. Protein sequences were highly conserved among the CHIs within clades, but diverged between clades. Thus, CHSs of each major plant lineage may have evolved independently following divergence, whereas CHIs in each clade in the phylogenetic analysis may have evolved separately from basal plants to angiosperms.</div></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"41 \",\"pages\":\"Article 100490\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407325000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407325000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

牡丹(Paeonia suffriticosa)是一种木本牡丹,是韩国、中国和日本重要的药用植物。黄酮类化合物是一类多酚类次生代谢产物。本文分析了韩国乡土植物参草(P. suffriticosa)不同组织中的7种黄酮类化合物。其中,与根、叶和花瓣中的其他类黄酮相比,黄酮醇含量更高,而黄酮(芹菜素和木犀草素)在所有组织中的含量都较低。与其他组织相比,根组织通常含有较高的类黄酮含量。由于目前还没有系统地对P. suffriticosa类黄酮生物合成基因的相关基因进行分子分析,我们进行了转录组分析,在转录组中鉴定了34,629个单基因。我们使用NCBI Nr和EMBL- ebi EMBL Interpro数据库的功能匹配结果与之前报道的参草P. suffriticosa相似。标记基因匹配度最高的种属是V. vinifera,这在其他芍药品种的报道中得到了证实。从转录组数据中鉴定了莽草酸途径酶和芳香氨基酸生物合成基因的编码基因。我们还在其他芍药品种以及拟南芥和水稻中发现了同源基因。基因拷贝数从DHQS和CS的1个到4CL的7到10个不等。序列和系统发育分析显示,从非维管植物到维管植物的4cl中存在一些保守的片段。对芍药属植物CHS的分析表明,芍药属中至少有3个CHS同源物。从底生植物到维管开花植物,CHSs的催化残基序列、CoA结合位点和结构活性都是保守的。在对CHS和CHI的系统发育分析中,来自主要植物谱系的CHS形成了自己的集群,而来自不同植物谱系的CHS则聚集在一起。蛋白质序列在进化支系内高度保守,但在进化支系之间存在分化。因此,每个主要植物谱系的CHIs可能在分化后独立进化,而系统发育分析中每个支系的CHIs可能分别从基生植物进化到被子植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of flavonoids in Paeonia suffruticosa and analyses of the genes involved in flavonoid biosynthesis in plants
Paeonia suffriticosa is a woody peony that is an important medicinal plant in Korea, China, and Japan. Flavonoids are a class of polyphenolic secondary metabolites. We analyzed seven flavonoid compounds in various tissues of Korean landrace P. suffriticosa. Of these, flavonols were more abundant compared with other flavonoids in the roots, leaves, and petals, whereas flavones (apigenin and luteolin) were present in low abundance in all tissues. The root tissues generally contained higher flavonoid content compared with the other tissues. Because molecular analyses of the genes involved in flavonoid biosynthesis genes have not been systematically conducted in P. suffriticosa, we performed a transcriptome analysis, which identified 34,629 unigenes in the transcriptome. Our functional matching results using the NCBI Nr and in EMBL-EBI EMBL Interpro databases were similar to those of previous reports in P. suffriticosa. The highest matching species for the annotated genes was V. vinifera, which was corroborated in reports from other Paeonia species. The genes encoding enzymes in the shikimate pathway and aromatic amino acids biosynthesis genes were identified from the transcriptome data. We also identified homologous genes in other Paeonia species as well as Arabidopsis and rice. The number of gene copies varied from one in DHQS and CS to seven to ten in 4CL. Sequence and phylogenetic analyses revealed that several conserved blocks were observed in 4CLs from nonvascular to vascular plants. A CHS analysis revealed that there were at least three homologs of CHSs in the genus Paeonia. The sequences of the catalytic residues, CoA binding sites, and structural activity of the CHSs were conserved from the basal plant of liverwort to vascular flowering plants. In a phylogenetic analysis of CHS and CHI, the CHSs from the major plant lineages formed their own cluster, whereas CHIs from diverse plant lineages were clustered together. Protein sequences were highly conserved among the CHIs within clades, but diverged between clades. Thus, CHSs of each major plant lineage may have evolved independently following divergence, whereas CHIs in each clade in the phylogenetic analysis may have evolved separately from basal plants to angiosperms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信