直径至少为3且最小特征值至少为- 3的非几何距离正则图

IF 0.9 3区 数学 Q1 MATHEMATICS
Jack H. Koolen , Kefan Yu , Xiaoye Liang , Harrison Choi , Greg Markowsky
{"title":"直径至少为3且最小特征值至少为- 3的非几何距离正则图","authors":"Jack H. Koolen ,&nbsp;Kefan Yu ,&nbsp;Xiaoye Liang ,&nbsp;Harrison Choi ,&nbsp;Greg Markowsky","doi":"10.1016/j.ejc.2024.104118","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we classify non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3. This is progress towards what is hoped to be an eventual complete classification of distance-regular graphs with smallest eigenvalue at least −3, analogous to existing classification results available in the case that the smallest eigenvalue is at least −2.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"126 ","pages":"Article 104118"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3\",\"authors\":\"Jack H. Koolen ,&nbsp;Kefan Yu ,&nbsp;Xiaoye Liang ,&nbsp;Harrison Choi ,&nbsp;Greg Markowsky\",\"doi\":\"10.1016/j.ejc.2024.104118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we classify non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3. This is progress towards what is hoped to be an eventual complete classification of distance-regular graphs with smallest eigenvalue at least −3, analogous to existing classification results available in the case that the smallest eigenvalue is at least −2.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"126 \",\"pages\":\"Article 104118\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824002038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824002038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对直径至少为3且最小特征值至少为- 3的非几何距离正则图进行了分类。这是对最小特征值至少为- 3的距离正则图的最终完整分类的进展,类似于最小特征值至少为- 2的现有分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3
In this paper, we classify non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least −3. This is progress towards what is hoped to be an eventual complete classification of distance-regular graphs with smallest eigenvalue at least −3, analogous to existing classification results available in the case that the smallest eigenvalue is at least −2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信