一种半集中式多智能体RL框架,用于高效灌溉调度

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Bernard T. Agyeman , Benjamin Decardi-Nelson , Jinfeng Liu , Sirish L. Shah
{"title":"一种半集中式多智能体RL框架,用于高效灌溉调度","authors":"Bernard T. Agyeman ,&nbsp;Benjamin Decardi-Nelson ,&nbsp;Jinfeng Liu ,&nbsp;Sirish L. Shah","doi":"10.1016/j.conengprac.2024.106183","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient water management in agriculture is essential for addressing the growing freshwater scarcity crisis. Multi-Agent Reinforcement Learning (MARL) has emerged as a promising method for solving daily irrigation scheduling problems in spatially variable fields, where management zones are employed to account for field variability. To enhance the application of MARL to address daily irrigation scheduling in large-scale fields with significant spatial variation, this study proposes a Semi-Centralized MARL (SCMARL) framework. The SCMARL framework adopts a hierarchical structure, decomposing the daily irrigation scheduling problem into two levels of decision-making. At the top level, a centralized coordinator agent determines irrigation timing, which is modeled as a discrete variable, based on field-wide soil moisture data, crop conditions, and weather forecasts. At the lower level, decentralized local agents use local soil moisture, crop, and weather information to determine the appropriate irrigation amounts for each management zone. To address the issue of non-stationarity in this framework, a state augmentation technique is employed, wherein the coordinator’s decision is incorporated into the decision-making process of the local agents. The SCMARL framework, which leverages the Proximal Policy Optimization algorithm for training the agents, is evaluated on a large-scale field in Lethbridge, Canada, and compared with an existing MARL irrigation scheduling approach. The results demonstrate improved performance, achieving a 4.0% reduction in water use and a 6.3% increase in irrigation water use efficiency.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"155 ","pages":"Article 106183"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-centralized multi-agent RL framework for efficient irrigation scheduling\",\"authors\":\"Bernard T. Agyeman ,&nbsp;Benjamin Decardi-Nelson ,&nbsp;Jinfeng Liu ,&nbsp;Sirish L. Shah\",\"doi\":\"10.1016/j.conengprac.2024.106183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient water management in agriculture is essential for addressing the growing freshwater scarcity crisis. Multi-Agent Reinforcement Learning (MARL) has emerged as a promising method for solving daily irrigation scheduling problems in spatially variable fields, where management zones are employed to account for field variability. To enhance the application of MARL to address daily irrigation scheduling in large-scale fields with significant spatial variation, this study proposes a Semi-Centralized MARL (SCMARL) framework. The SCMARL framework adopts a hierarchical structure, decomposing the daily irrigation scheduling problem into two levels of decision-making. At the top level, a centralized coordinator agent determines irrigation timing, which is modeled as a discrete variable, based on field-wide soil moisture data, crop conditions, and weather forecasts. At the lower level, decentralized local agents use local soil moisture, crop, and weather information to determine the appropriate irrigation amounts for each management zone. To address the issue of non-stationarity in this framework, a state augmentation technique is employed, wherein the coordinator’s decision is incorporated into the decision-making process of the local agents. The SCMARL framework, which leverages the Proximal Policy Optimization algorithm for training the agents, is evaluated on a large-scale field in Lethbridge, Canada, and compared with an existing MARL irrigation scheduling approach. The results demonstrate improved performance, achieving a 4.0% reduction in water use and a 6.3% increase in irrigation water use efficiency.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"155 \",\"pages\":\"Article 106183\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124003423\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003423","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

有效的农业用水管理对于解决日益严重的淡水短缺危机至关重要。多智能体强化学习(MARL)已成为解决空间可变农田日常灌溉调度问题的一种有前途的方法,其中管理区域用于解释田地的可变性。为了加强MARL在空间差异较大的大尺度农田日灌溉调度中的应用,本研究提出了一个半集中式MARL (SCMARL)框架。SCMARL框架采用分层结构,将日灌溉调度问题分解为两个层次的决策。在顶层,集中式协调代理决定灌溉时间,该时间被建模为离散变量,基于田间土壤湿度数据、作物状况和天气预报。在较低的层次上,分散的地方代理使用当地的土壤湿度、作物和天气信息来确定每个管理区的适当灌溉量。为了解决该框架中的非平稳性问题,采用了状态增强技术,将协调器的决策纳入到局部代理的决策过程中。利用近端策略优化算法训练代理的SCMARL框架在加拿大Lethbridge的大规模农田上进行了评估,并与现有的MARL灌溉调度方法进行了比较。结果表明,该系统的性能得到改善,用水量减少4.0%,灌溉用水效率提高6.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi-centralized multi-agent RL framework for efficient irrigation scheduling
Efficient water management in agriculture is essential for addressing the growing freshwater scarcity crisis. Multi-Agent Reinforcement Learning (MARL) has emerged as a promising method for solving daily irrigation scheduling problems in spatially variable fields, where management zones are employed to account for field variability. To enhance the application of MARL to address daily irrigation scheduling in large-scale fields with significant spatial variation, this study proposes a Semi-Centralized MARL (SCMARL) framework. The SCMARL framework adopts a hierarchical structure, decomposing the daily irrigation scheduling problem into two levels of decision-making. At the top level, a centralized coordinator agent determines irrigation timing, which is modeled as a discrete variable, based on field-wide soil moisture data, crop conditions, and weather forecasts. At the lower level, decentralized local agents use local soil moisture, crop, and weather information to determine the appropriate irrigation amounts for each management zone. To address the issue of non-stationarity in this framework, a state augmentation technique is employed, wherein the coordinator’s decision is incorporated into the decision-making process of the local agents. The SCMARL framework, which leverages the Proximal Policy Optimization algorithm for training the agents, is evaluated on a large-scale field in Lethbridge, Canada, and compared with an existing MARL irrigation scheduling approach. The results demonstrate improved performance, achieving a 4.0% reduction in water use and a 6.3% increase in irrigation water use efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信