基于硫系相变材料的均匀光电储层计算系统

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng Zhao , Senhao Yan , Ruoxuan Xing , Jiaping Yao , Xiang Ge , Kai Li , Xiaomin Cheng , Xiangshui Miao
{"title":"基于硫系相变材料的均匀光电储层计算系统","authors":"Peng Zhao ,&nbsp;Senhao Yan ,&nbsp;Ruoxuan Xing ,&nbsp;Jiaping Yao ,&nbsp;Xiang Ge ,&nbsp;Kai Li ,&nbsp;Xiaomin Cheng ,&nbsp;Xiangshui Miao","doi":"10.1016/j.mtnano.2025.100576","DOIUrl":null,"url":null,"abstract":"<div><div>A neuromorphic visual system integrating photoelectronic synapses to perform the in-sensor computing is triggering a revolution thanks to the reduction of latency and energy consumption. Phase change materials based on Ge-Sb-Te ternary alloy have become a strong candidate for neuromorphic computing due to its compatibility with complementary metal oxide semiconductor (CMOS). Hence, a homogeneous photoelectronic reservoir computing (RC) system based on chalcogenide phase change material is proposed in this work. The reservoir and readout layers are realized by the same material, and the sign language recognition is implemented by in-sensor computing and in-memory parallel computing. By doping N into Ge<sub>1</sub>Sb<sub>4</sub>Te<sub>7</sub> (NGST), the conductance modulation linearity, symmetry and retention of the phase change electrical synapse are improved, making the NGST electrical synapse excellent for readout layer. Meanwhile, the nonlinear optical response characteristics and persistent photoconductivity (PPC) effect of amorphous-NGST (a-NGST) enable the a-NGST photo-synapses to form an ideal photoelectric reservoir. The system's sign language recognition accuracy can reach 99.58 %. With a random noise level of 15 %, the system's sign language recognition accuracy remains above 90 %. This homogeneous design for photoelectric RC system shows excellent process compatibility and high integration. Furthermore, due to the excellent retention characteristics of the NGST synaptic device in the readout layer, the system's sign language recognition accuracy remains 97.60 % after 10<sup>6</sup>s. This work shows that the chalcogenide phase-change materials have great potential in in-sensor computing applications.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100576"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous photoelectric reservoir computing system based on chalcogenide phase change materials\",\"authors\":\"Peng Zhao ,&nbsp;Senhao Yan ,&nbsp;Ruoxuan Xing ,&nbsp;Jiaping Yao ,&nbsp;Xiang Ge ,&nbsp;Kai Li ,&nbsp;Xiaomin Cheng ,&nbsp;Xiangshui Miao\",\"doi\":\"10.1016/j.mtnano.2025.100576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A neuromorphic visual system integrating photoelectronic synapses to perform the in-sensor computing is triggering a revolution thanks to the reduction of latency and energy consumption. Phase change materials based on Ge-Sb-Te ternary alloy have become a strong candidate for neuromorphic computing due to its compatibility with complementary metal oxide semiconductor (CMOS). Hence, a homogeneous photoelectronic reservoir computing (RC) system based on chalcogenide phase change material is proposed in this work. The reservoir and readout layers are realized by the same material, and the sign language recognition is implemented by in-sensor computing and in-memory parallel computing. By doping N into Ge<sub>1</sub>Sb<sub>4</sub>Te<sub>7</sub> (NGST), the conductance modulation linearity, symmetry and retention of the phase change electrical synapse are improved, making the NGST electrical synapse excellent for readout layer. Meanwhile, the nonlinear optical response characteristics and persistent photoconductivity (PPC) effect of amorphous-NGST (a-NGST) enable the a-NGST photo-synapses to form an ideal photoelectric reservoir. The system's sign language recognition accuracy can reach 99.58 %. With a random noise level of 15 %, the system's sign language recognition accuracy remains above 90 %. This homogeneous design for photoelectric RC system shows excellent process compatibility and high integration. Furthermore, due to the excellent retention characteristics of the NGST synaptic device in the readout layer, the system's sign language recognition accuracy remains 97.60 % after 10<sup>6</sup>s. This work shows that the chalcogenide phase-change materials have great potential in in-sensor computing applications.</div></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"29 \",\"pages\":\"Article 100576\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842025000070\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000070","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种集成光电子突触来执行传感器内计算的神经形态视觉系统正在引发一场革命,这要归功于延迟和能量消耗的减少。基于Ge-Sb-Te三元合金的相变材料由于其与互补金属氧化物半导体(CMOS)的相容性而成为神经形态计算的有力候选者。因此,本文提出了一种基于硫系相变材料的均匀光电子储层计算系统。存储层和读出层采用相同的材料实现,手语识别采用传感器内计算和内存并行计算实现。通过在Ge1Sb4Te7 (NGST)中掺杂N,改善了相变电突触的电导调制线性度、对称性和保留性,使NGST电突触具有良好的读出层性能。同时,非晶ngst (a-NGST)的非线性光学响应特性和持续光电导率(PPC)效应使a-NGST光突触形成理想的光电储层。该系统的手语识别准确率可达99.58%。在随机噪声水平为15%的情况下,该系统的手语识别准确率保持在90%以上。该光电RC系统均质化设计具有良好的工艺兼容性和高集成度。此外,由于NGST突触装置在读出层具有优异的保留特性,在106s后,系统的手语识别准确率仍保持在97.60%。这项工作表明,硫系相变材料在传感器内计算应用中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous photoelectric reservoir computing system based on chalcogenide phase change materials
A neuromorphic visual system integrating photoelectronic synapses to perform the in-sensor computing is triggering a revolution thanks to the reduction of latency and energy consumption. Phase change materials based on Ge-Sb-Te ternary alloy have become a strong candidate for neuromorphic computing due to its compatibility with complementary metal oxide semiconductor (CMOS). Hence, a homogeneous photoelectronic reservoir computing (RC) system based on chalcogenide phase change material is proposed in this work. The reservoir and readout layers are realized by the same material, and the sign language recognition is implemented by in-sensor computing and in-memory parallel computing. By doping N into Ge1Sb4Te7 (NGST), the conductance modulation linearity, symmetry and retention of the phase change electrical synapse are improved, making the NGST electrical synapse excellent for readout layer. Meanwhile, the nonlinear optical response characteristics and persistent photoconductivity (PPC) effect of amorphous-NGST (a-NGST) enable the a-NGST photo-synapses to form an ideal photoelectric reservoir. The system's sign language recognition accuracy can reach 99.58 %. With a random noise level of 15 %, the system's sign language recognition accuracy remains above 90 %. This homogeneous design for photoelectric RC system shows excellent process compatibility and high integration. Furthermore, due to the excellent retention characteristics of the NGST synaptic device in the readout layer, the system's sign language recognition accuracy remains 97.60 % after 106s. This work shows that the chalcogenide phase-change materials have great potential in in-sensor computing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信