Jia-Xuan He , Zhao-Dong Xu , Qiang-Qiang Li , Zhong-Wei Hu , Ya-Xin Wei , Teng Ge , Yao-Rong Dong , Xing-Huai Huang , Gabriele Milani
{"title":"循环荷载作用下非线性压缩特性的时域粘弹性模型","authors":"Jia-Xuan He , Zhao-Dong Xu , Qiang-Qiang Li , Zhong-Wei Hu , Ya-Xin Wei , Teng Ge , Yao-Rong Dong , Xing-Huai Huang , Gabriele Milani","doi":"10.1016/j.ijengsci.2024.104200","DOIUrl":null,"url":null,"abstract":"<div><div>Viscoelastic (VE) pads, commonly employed as passive damping components in damping devices to absorb and dissipate energy, present challenges in predicting the mechanical behavior under large deformation due to significant nonlinearity. This study introduces a novel nonlinear time-domain model to accurately characterize the response of VE pads subjected to cyclic loading across small, moderate, and large compressive deformations. Effects such as strain hardening, the Mullins effect, continuous stress softening, and residual deformation are incorporated into the model. The proposed model integrates hyperelastic, viscoelastic, and elastoplastic parts, arranged in parallel, each addressing distinct aspects of the mechanical behavior. The hyperelastic part captures the time-independent response, in particular strain hardening in nonlinear stiffness. The VE part accounts for the frequency-dependent damping behavior, focusing on the initial unloading stiffness, the shape and area of the hysteresis loop, and major residual deformations. The elastoplastic part models the frequency-dependent plasticity, adjusting residual deformation and determining the extent of Mullins effect and continuous stress softening. Model parameters are determined through fitting procedures using uniaxial quasi-static and cyclic compression test data, allowing for an accurate description of the nonlinear mechanical behavior in the time domain. To assess the prediction capacity and applicability of the proposed model, the simulation results are comparatively evaluated by error analysis. The sensitivity analysis is further performed to investigate the influence of individual parameters. The proposed model demonstrates high accuracy and robustness in representing the mechanical behavior of VE pads across small, moderate, and large compressive deformations. The parameters in the hyperelastic, viscoelastic, and elastoplastic parts have accurate interpretations, providing distinct roles and contributions to the overall mechanical behavior.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"208 ","pages":"Article 104200"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-domain viscoelastic model of nonlinear compression behavior under cyclic loading\",\"authors\":\"Jia-Xuan He , Zhao-Dong Xu , Qiang-Qiang Li , Zhong-Wei Hu , Ya-Xin Wei , Teng Ge , Yao-Rong Dong , Xing-Huai Huang , Gabriele Milani\",\"doi\":\"10.1016/j.ijengsci.2024.104200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Viscoelastic (VE) pads, commonly employed as passive damping components in damping devices to absorb and dissipate energy, present challenges in predicting the mechanical behavior under large deformation due to significant nonlinearity. This study introduces a novel nonlinear time-domain model to accurately characterize the response of VE pads subjected to cyclic loading across small, moderate, and large compressive deformations. Effects such as strain hardening, the Mullins effect, continuous stress softening, and residual deformation are incorporated into the model. The proposed model integrates hyperelastic, viscoelastic, and elastoplastic parts, arranged in parallel, each addressing distinct aspects of the mechanical behavior. The hyperelastic part captures the time-independent response, in particular strain hardening in nonlinear stiffness. The VE part accounts for the frequency-dependent damping behavior, focusing on the initial unloading stiffness, the shape and area of the hysteresis loop, and major residual deformations. The elastoplastic part models the frequency-dependent plasticity, adjusting residual deformation and determining the extent of Mullins effect and continuous stress softening. Model parameters are determined through fitting procedures using uniaxial quasi-static and cyclic compression test data, allowing for an accurate description of the nonlinear mechanical behavior in the time domain. To assess the prediction capacity and applicability of the proposed model, the simulation results are comparatively evaluated by error analysis. The sensitivity analysis is further performed to investigate the influence of individual parameters. The proposed model demonstrates high accuracy and robustness in representing the mechanical behavior of VE pads across small, moderate, and large compressive deformations. The parameters in the hyperelastic, viscoelastic, and elastoplastic parts have accurate interpretations, providing distinct roles and contributions to the overall mechanical behavior.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"208 \",\"pages\":\"Article 104200\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001848\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001848","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A time-domain viscoelastic model of nonlinear compression behavior under cyclic loading
Viscoelastic (VE) pads, commonly employed as passive damping components in damping devices to absorb and dissipate energy, present challenges in predicting the mechanical behavior under large deformation due to significant nonlinearity. This study introduces a novel nonlinear time-domain model to accurately characterize the response of VE pads subjected to cyclic loading across small, moderate, and large compressive deformations. Effects such as strain hardening, the Mullins effect, continuous stress softening, and residual deformation are incorporated into the model. The proposed model integrates hyperelastic, viscoelastic, and elastoplastic parts, arranged in parallel, each addressing distinct aspects of the mechanical behavior. The hyperelastic part captures the time-independent response, in particular strain hardening in nonlinear stiffness. The VE part accounts for the frequency-dependent damping behavior, focusing on the initial unloading stiffness, the shape and area of the hysteresis loop, and major residual deformations. The elastoplastic part models the frequency-dependent plasticity, adjusting residual deformation and determining the extent of Mullins effect and continuous stress softening. Model parameters are determined through fitting procedures using uniaxial quasi-static and cyclic compression test data, allowing for an accurate description of the nonlinear mechanical behavior in the time domain. To assess the prediction capacity and applicability of the proposed model, the simulation results are comparatively evaluated by error analysis. The sensitivity analysis is further performed to investigate the influence of individual parameters. The proposed model demonstrates high accuracy and robustness in representing the mechanical behavior of VE pads across small, moderate, and large compressive deformations. The parameters in the hyperelastic, viscoelastic, and elastoplastic parts have accurate interpretations, providing distinct roles and contributions to the overall mechanical behavior.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.