用数值模型探讨了单微米级铝颗粒的燃烧机理

Xinzhe Chen , Jiaxin Liu , Yabei Xu , Di Zhang , Yong Tang , Baolu Shi , Yunchao Feng , Yingchun Wu , Qingzhao Chu , Dongping Chen
{"title":"用数值模型探讨了单微米级铝颗粒的燃烧机理","authors":"Xinzhe Chen ,&nbsp;Jiaxin Liu ,&nbsp;Yabei Xu ,&nbsp;Di Zhang ,&nbsp;Yong Tang ,&nbsp;Baolu Shi ,&nbsp;Yunchao Feng ,&nbsp;Yingchun Wu ,&nbsp;Qingzhao Chu ,&nbsp;Dongping Chen","doi":"10.1016/j.fpc.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we explore the combustion mechanism of single micron-sized aluminum particles using a numerical model. The Burcat database and Catoire mechanism is considered as the thermodynamic data and the kinetic mechanism for our numerical model of aluminum combustion. Two independent experiments, including particle temperature profiles, ignition delay and burning time, are selected to evaluate the performance of the numerical model. The model shows great agreement for all considered properties. A parametric study is further conducted to identify the effect of involved physical parameters on the combustion process. The diffusion coefficient (<em>D</em>) of oxidizers and the activation energy of surface kinetics (<em>E</em><sub>surf</sub>) and evaporation coefficient (<em>α</em>) of aluminum impact the particle temperature the most. Burning time is most sensitive to the activation energy of surface kinetics (<em>E</em><sub>surf</sub>). The optical measurement in a solid propellant combustion indicates that the contact angle of the oxide cap on Al particle is between 10° and 20°. It is found that the selection of contact angle of the oxide cap significantly impacts the prediction of combustion time and residual of active aluminum. The current work highlights the importance of physical properties on the prediction of Al combustion, suggesting that more detailed evaluation from experiments and theory is encouraged.</div></div>","PeriodicalId":100531,"journal":{"name":"FirePhysChem","volume":"5 1","pages":"Pages 57-67"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the combustion mechanism of single micron-sized aluminum particles with a numerical model\",\"authors\":\"Xinzhe Chen ,&nbsp;Jiaxin Liu ,&nbsp;Yabei Xu ,&nbsp;Di Zhang ,&nbsp;Yong Tang ,&nbsp;Baolu Shi ,&nbsp;Yunchao Feng ,&nbsp;Yingchun Wu ,&nbsp;Qingzhao Chu ,&nbsp;Dongping Chen\",\"doi\":\"10.1016/j.fpc.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we explore the combustion mechanism of single micron-sized aluminum particles using a numerical model. The Burcat database and Catoire mechanism is considered as the thermodynamic data and the kinetic mechanism for our numerical model of aluminum combustion. Two independent experiments, including particle temperature profiles, ignition delay and burning time, are selected to evaluate the performance of the numerical model. The model shows great agreement for all considered properties. A parametric study is further conducted to identify the effect of involved physical parameters on the combustion process. The diffusion coefficient (<em>D</em>) of oxidizers and the activation energy of surface kinetics (<em>E</em><sub>surf</sub>) and evaporation coefficient (<em>α</em>) of aluminum impact the particle temperature the most. Burning time is most sensitive to the activation energy of surface kinetics (<em>E</em><sub>surf</sub>). The optical measurement in a solid propellant combustion indicates that the contact angle of the oxide cap on Al particle is between 10° and 20°. It is found that the selection of contact angle of the oxide cap significantly impacts the prediction of combustion time and residual of active aluminum. The current work highlights the importance of physical properties on the prediction of Al combustion, suggesting that more detailed evaluation from experiments and theory is encouraged.</div></div>\",\"PeriodicalId\":100531,\"journal\":{\"name\":\"FirePhysChem\",\"volume\":\"5 1\",\"pages\":\"Pages 57-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FirePhysChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667134424000348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FirePhysChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667134424000348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们利用数值模型探讨了单微米级铝颗粒的燃烧机理。采用Burcat数据库和Catoire机理作为铝燃烧数值模型的热力学数据和动力学机理。选取两个独立实验,包括颗粒温度分布、点火延迟和燃烧时间,来评估数值模型的性能。该模型对所有考虑的属性都显示出极大的一致性。进一步进行了参数化研究,以确定所涉及的物理参数对燃烧过程的影响。氧化剂的扩散系数(D)、表面动力学活化能(Esurf)和铝的蒸发系数(α)对颗粒温度的影响最大。燃烧时间对表面动力学活化能(Esurf)最为敏感。固体推进剂燃烧过程的光学测量表明,氧化帽与Al颗粒的接触角在10°~ 20°之间。结果表明,氧化帽接触角的选择对燃烧时间和活性铝残留量的预测有显著影响。目前的工作强调了物理性质对预测Al燃烧的重要性,建议从实验和理论中进行更详细的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the combustion mechanism of single micron-sized aluminum particles with a numerical model

Exploring the combustion mechanism of single micron-sized aluminum particles with a numerical model
In this work, we explore the combustion mechanism of single micron-sized aluminum particles using a numerical model. The Burcat database and Catoire mechanism is considered as the thermodynamic data and the kinetic mechanism for our numerical model of aluminum combustion. Two independent experiments, including particle temperature profiles, ignition delay and burning time, are selected to evaluate the performance of the numerical model. The model shows great agreement for all considered properties. A parametric study is further conducted to identify the effect of involved physical parameters on the combustion process. The diffusion coefficient (D) of oxidizers and the activation energy of surface kinetics (Esurf) and evaporation coefficient (α) of aluminum impact the particle temperature the most. Burning time is most sensitive to the activation energy of surface kinetics (Esurf). The optical measurement in a solid propellant combustion indicates that the contact angle of the oxide cap on Al particle is between 10° and 20°. It is found that the selection of contact angle of the oxide cap significantly impacts the prediction of combustion time and residual of active aluminum. The current work highlights the importance of physical properties on the prediction of Al combustion, suggesting that more detailed evaluation from experiments and theory is encouraged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信