CoMn2O₄纳米纤维:增强高性能超级电容器的一维电极材料

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sidraya N. Jirankalagi , Avinash C. Molane , Sarjerao M. Sutar , Ramesh N. Mulik , Manickam Selvaraj , Kalathiparambil Rajendra Pai Sunajadevi , Vikas B. Patil
{"title":"CoMn2O₄纳米纤维:增强高性能超级电容器的一维电极材料","authors":"Sidraya N. Jirankalagi ,&nbsp;Avinash C. Molane ,&nbsp;Sarjerao M. Sutar ,&nbsp;Ramesh N. Mulik ,&nbsp;Manickam Selvaraj ,&nbsp;Kalathiparambil Rajendra Pai Sunajadevi ,&nbsp;Vikas B. Patil","doi":"10.1016/j.synthmet.2025.117836","DOIUrl":null,"url":null,"abstract":"<div><div>One-dimensional CoMn<sub>2</sub>O<sub>4</sub> nanofibers were developed via the electrospinning method, offers a novel approach for designing electrode materials for energy storage device -supercapacitors. Field emission scanning electron microscopy (FESEM) with EDX confirmed the highly porous CoMn<sub>2</sub>O<sub>4</sub> phase with desired composition. Elemental mapping studies confirmed uniform distribution of Co, Mn, and O elements throughout the nanofibers.Electrochemical studies underscored the crucial role of structural voids and spacing in enhancing energy storage capacity, establishing CoMn<sub>2</sub>O<sub>4</sub> as a promising electrode material. Specific energy and power studies yielded remarkable results of 93.84 Whr/kg and 55.20 kW/kg, respectively. Additionally, specific capacitance determination returned 937.42 F/g, indicating exceptional charging and discharging performance over 1000 cycles with 93.3 % capacitance retention. Moreover, the flexible symmetric supercapacitor is expected to demonstrate exceptional flexibility and electrochemical stability, achieving a specific energy of 232 Wh/kg and a specific power of 84 kW/kg at a current density of 1 mA/cm². These findings advance our understanding of CoMn<sub>2</sub>O<sub>4</sub> nanofibers and offer insights into developing efficient and stable energy storage systems for diverse applications.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"311 ","pages":"Article 117836"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering CoMn2O₄ nanofibers: Enhancing one-dimensional electrode materials for high-performance supercapacitors\",\"authors\":\"Sidraya N. Jirankalagi ,&nbsp;Avinash C. Molane ,&nbsp;Sarjerao M. Sutar ,&nbsp;Ramesh N. Mulik ,&nbsp;Manickam Selvaraj ,&nbsp;Kalathiparambil Rajendra Pai Sunajadevi ,&nbsp;Vikas B. Patil\",\"doi\":\"10.1016/j.synthmet.2025.117836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One-dimensional CoMn<sub>2</sub>O<sub>4</sub> nanofibers were developed via the electrospinning method, offers a novel approach for designing electrode materials for energy storage device -supercapacitors. Field emission scanning electron microscopy (FESEM) with EDX confirmed the highly porous CoMn<sub>2</sub>O<sub>4</sub> phase with desired composition. Elemental mapping studies confirmed uniform distribution of Co, Mn, and O elements throughout the nanofibers.Electrochemical studies underscored the crucial role of structural voids and spacing in enhancing energy storage capacity, establishing CoMn<sub>2</sub>O<sub>4</sub> as a promising electrode material. Specific energy and power studies yielded remarkable results of 93.84 Whr/kg and 55.20 kW/kg, respectively. Additionally, specific capacitance determination returned 937.42 F/g, indicating exceptional charging and discharging performance over 1000 cycles with 93.3 % capacitance retention. Moreover, the flexible symmetric supercapacitor is expected to demonstrate exceptional flexibility and electrochemical stability, achieving a specific energy of 232 Wh/kg and a specific power of 84 kW/kg at a current density of 1 mA/cm². These findings advance our understanding of CoMn<sub>2</sub>O<sub>4</sub> nanofibers and offer insights into developing efficient and stable energy storage systems for diverse applications.</div></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"311 \",\"pages\":\"Article 117836\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677925000128\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925000128","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用静电纺丝法制备了一维CoMn2O4纳米纤维,为储能装置-超级电容器电极材料的设计提供了一种新的思路。场发射扫描电镜(FESEM)与EDX证实了具有所需成分的高多孔CoMn2O4相。元素映射研究证实了Co、Mn和O元素在纳米纤维中的均匀分布。电化学研究强调了结构空隙和间距在提高储能能力方面的关键作用,确立了CoMn2O4是一种很有前途的电极材料。比能和功率的研究结果分别为93.84 Whr/kg和55.20 kW/kg。此外,比电容测定返回937.42 F/g,表明在1000次循环中具有优异的充放电性能,电容保持率为93.3 %。此外,柔性对称超级电容器有望表现出优异的灵活性和电化学稳定性,在电流密度为1 mA/cm²时,比能量为232 Wh/kg,比功率为84 kW/kg。这些发现促进了我们对CoMn2O4纳米纤维的理解,并为开发用于各种应用的高效稳定的储能系统提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering CoMn2O₄ nanofibers: Enhancing one-dimensional electrode materials for high-performance supercapacitors
One-dimensional CoMn2O4 nanofibers were developed via the electrospinning method, offers a novel approach for designing electrode materials for energy storage device -supercapacitors. Field emission scanning electron microscopy (FESEM) with EDX confirmed the highly porous CoMn2O4 phase with desired composition. Elemental mapping studies confirmed uniform distribution of Co, Mn, and O elements throughout the nanofibers.Electrochemical studies underscored the crucial role of structural voids and spacing in enhancing energy storage capacity, establishing CoMn2O4 as a promising electrode material. Specific energy and power studies yielded remarkable results of 93.84 Whr/kg and 55.20 kW/kg, respectively. Additionally, specific capacitance determination returned 937.42 F/g, indicating exceptional charging and discharging performance over 1000 cycles with 93.3 % capacitance retention. Moreover, the flexible symmetric supercapacitor is expected to demonstrate exceptional flexibility and electrochemical stability, achieving a specific energy of 232 Wh/kg and a specific power of 84 kW/kg at a current density of 1 mA/cm². These findings advance our understanding of CoMn2O4 nanofibers and offer insights into developing efficient and stable energy storage systems for diverse applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信