具有分段常数参数的微分方程的光滑不变流形和叶状

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Weijie Lu , Donal O'Regan , Yonghui Xia
{"title":"具有分段常数参数的微分方程的光滑不变流形和叶状","authors":"Weijie Lu ,&nbsp;Donal O'Regan ,&nbsp;Yonghui Xia","doi":"10.1016/j.bulsci.2025.103579","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we establish the theory of smooth invariant manifolds and smooth invariant foliations for the differential equations with piecewise constant argument of a generalized type (DEPCAGs). Suppose that the linear DEPCAGs admits a <em>α</em>-exponential dichotomy, we obtain the existence of Lipschitz stable (unstable) invariant manifolds and Lipschitz stable (unstable) invariant foliations, which are based on the Lyapunov-Perron integrals with piecewise constant argument and other non-trivial techniques (such as, dichotomy inequalities with piecewise constant argument). Furthermore, we formulate and prove the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smoothness of these manifolds and foliations for DEPCAGs by means of the fiber contraction theorem.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103579"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth invariant manifolds and foliations for the differential equations with piecewise constant argument\",\"authors\":\"Weijie Lu ,&nbsp;Donal O'Regan ,&nbsp;Yonghui Xia\",\"doi\":\"10.1016/j.bulsci.2025.103579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we establish the theory of smooth invariant manifolds and smooth invariant foliations for the differential equations with piecewise constant argument of a generalized type (DEPCAGs). Suppose that the linear DEPCAGs admits a <em>α</em>-exponential dichotomy, we obtain the existence of Lipschitz stable (unstable) invariant manifolds and Lipschitz stable (unstable) invariant foliations, which are based on the Lyapunov-Perron integrals with piecewise constant argument and other non-trivial techniques (such as, dichotomy inequalities with piecewise constant argument). Furthermore, we formulate and prove the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smoothness of these manifolds and foliations for DEPCAGs by means of the fiber contraction theorem.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"199 \",\"pages\":\"Article 103579\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000053\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000053","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一类广义分段常数微分方程的光滑不变流形和光滑不变叶状理论。假设线性depcag允许α-指数二分,我们得到了基于分段常数参数Lyapunov-Perron积分和其他非平凡技巧(如分段常数参数二分不等式)的Lipschitz稳定(不稳定)不变流形和Lipschitz稳定(不稳定)不变叶形的存在性。在此基础上,利用纤维收缩定理,给出并证明了这些流形和叶形的c1 -光滑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth invariant manifolds and foliations for the differential equations with piecewise constant argument
In this work, we establish the theory of smooth invariant manifolds and smooth invariant foliations for the differential equations with piecewise constant argument of a generalized type (DEPCAGs). Suppose that the linear DEPCAGs admits a α-exponential dichotomy, we obtain the existence of Lipschitz stable (unstable) invariant manifolds and Lipschitz stable (unstable) invariant foliations, which are based on the Lyapunov-Perron integrals with piecewise constant argument and other non-trivial techniques (such as, dichotomy inequalities with piecewise constant argument). Furthermore, we formulate and prove the C1-smoothness of these manifolds and foliations for DEPCAGs by means of the fiber contraction theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信