复对称Toeplitz算子的刻画

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Sudip Ranjan Bhuia, Deepak Pradhan, Jaydeb Sarkar
{"title":"复对称Toeplitz算子的刻画","authors":"Sudip Ranjan Bhuia,&nbsp;Deepak Pradhan,&nbsp;Jaydeb Sarkar","doi":"10.1016/j.bulsci.2025.103578","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize Toeplitz operators that are complex symmetric. This follows as a by-product of characterizations of conjugations on Hilbert spaces. Notably, we prove that every conjugation admits a canonical factorization. As a consequence, we prove that a Toeplitz operator is complex symmetric if and only if the Toeplitz operator is <em>S</em>-Toeplitz for some unilateral shift <em>S</em> and the transpose of the Toeplitz operator matrix is equal to the matrix of the Toeplitz operator corresponding to the basis of the unilateral shift <em>S</em>. Also, we characterize complex symmetric Toeplitz operators on the Hardy space over the open unit polydisc. Our results are related to a question raised by K. Guo and S. Zhu <span><span>[9]</span></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103578"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of complex symmetric Toeplitz operators\",\"authors\":\"Sudip Ranjan Bhuia,&nbsp;Deepak Pradhan,&nbsp;Jaydeb Sarkar\",\"doi\":\"10.1016/j.bulsci.2025.103578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We characterize Toeplitz operators that are complex symmetric. This follows as a by-product of characterizations of conjugations on Hilbert spaces. Notably, we prove that every conjugation admits a canonical factorization. As a consequence, we prove that a Toeplitz operator is complex symmetric if and only if the Toeplitz operator is <em>S</em>-Toeplitz for some unilateral shift <em>S</em> and the transpose of the Toeplitz operator matrix is equal to the matrix of the Toeplitz operator corresponding to the basis of the unilateral shift <em>S</em>. Also, we characterize complex symmetric Toeplitz operators on the Hardy space over the open unit polydisc. Our results are related to a question raised by K. Guo and S. Zhu <span><span>[9]</span></span>.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"199 \",\"pages\":\"Article 103578\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000041\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000041","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们刻画了复对称的Toeplitz算子。这是希尔伯特空间共轭表征的副产品。值得注意的是,我们证明了每个共轭都允许正则分解。因此,我们证明了Toeplitz算子是复对称的当且仅当Toeplitz算子是S-Toeplitz,且Toeplitz算子矩阵的转置等于Toeplitz算子对应于单侧移位S的基的矩阵。同时,我们刻画了开单位多盘上Hardy空间上的复对称Toeplitz算子。我们的研究结果与郭锴和朱s提出的一个问题有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of complex symmetric Toeplitz operators
We characterize Toeplitz operators that are complex symmetric. This follows as a by-product of characterizations of conjugations on Hilbert spaces. Notably, we prove that every conjugation admits a canonical factorization. As a consequence, we prove that a Toeplitz operator is complex symmetric if and only if the Toeplitz operator is S-Toeplitz for some unilateral shift S and the transpose of the Toeplitz operator matrix is equal to the matrix of the Toeplitz operator corresponding to the basis of the unilateral shift S. Also, we characterize complex symmetric Toeplitz operators on the Hardy space over the open unit polydisc. Our results are related to a question raised by K. Guo and S. Zhu [9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信