Ψ-Hilfer导数的无穷小延伸

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
F.S. Costa , J.C.A. Soares , J.V.C. Sousa , G.S.F. Frederico , G.L. Araujo
{"title":"Ψ-Hilfer导数的无穷小延伸","authors":"F.S. Costa ,&nbsp;J.C.A. Soares ,&nbsp;J.V.C. Sousa ,&nbsp;G.S.F. Frederico ,&nbsp;G.L. Araujo","doi":"10.1016/j.bulsci.2024.103574","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a study on the infinitesimal prolongation of Ψ-Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Ψ-Thomas-Fermi equation. Numerical simulations are presented to the model.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103574"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal prolongation of the Ψ-Hilfer derivative\",\"authors\":\"F.S. Costa ,&nbsp;J.C.A. Soares ,&nbsp;J.V.C. Sousa ,&nbsp;G.S.F. Frederico ,&nbsp;G.L. Araujo\",\"doi\":\"10.1016/j.bulsci.2024.103574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a study on the infinitesimal prolongation of Ψ-Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Ψ-Thomas-Fermi equation. Numerical simulations are presented to the model.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"199 \",\"pages\":\"Article 103574\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001921\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001921","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Ψ-Hilfer分数阶导数的无穷小展延。给出了李群变换的性质,并将其应用于分数阶Ψ-Thomas-Fermi方程。对该模型进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitesimal prolongation of the Ψ-Hilfer derivative
In this paper, a study on the infinitesimal prolongation of Ψ-Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Ψ-Thomas-Fermi equation. Numerical simulations are presented to the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信