{"title":"Ψ-Hilfer导数的无穷小延伸","authors":"F.S. Costa , J.C.A. Soares , J.V.C. Sousa , G.S.F. Frederico , G.L. Araujo","doi":"10.1016/j.bulsci.2024.103574","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a study on the infinitesimal prolongation of Ψ-Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Ψ-Thomas-Fermi equation. Numerical simulations are presented to the model.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"199 ","pages":"Article 103574"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal prolongation of the Ψ-Hilfer derivative\",\"authors\":\"F.S. Costa , J.C.A. Soares , J.V.C. Sousa , G.S.F. Frederico , G.L. Araujo\",\"doi\":\"10.1016/j.bulsci.2024.103574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a study on the infinitesimal prolongation of Ψ-Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Ψ-Thomas-Fermi equation. Numerical simulations are presented to the model.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"199 \",\"pages\":\"Article 103574\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724001921\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724001921","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Infinitesimal prolongation of the Ψ-Hilfer derivative
In this paper, a study on the infinitesimal prolongation of Ψ-Hilfer fractional derivative is performed. The properties of Lie group transformation are presented, which are applied in the fractional Ψ-Thomas-Fermi equation. Numerical simulations are presented to the model.