Shipan Xu , Xuyang Du , Xiaolong Yang , Huaiteng Hang , Jun Xi , Guijiang Zhou , Yuanhui Sun
{"title":"基于苯并噻唑的具有局部杂化和电荷转移激发态(HLCT)特征的绿至深红色发光oled供体-受体-受体(D-A-A ')型荧光发射器的设计","authors":"Shipan Xu , Xuyang Du , Xiaolong Yang , Huaiteng Hang , Jun Xi , Guijiang Zhou , Yuanhui Sun","doi":"10.1016/j.orgel.2024.107182","DOIUrl":null,"url":null,"abstract":"<div><div>Organic light-emitting diodes (OLEDs) have significant applications in solid-state lightings and flat-panel displays. The development of novel organic emitters to meet the demands of high-performance OLEDs is attracting much attention. The electron withdrawing group benzothiadiazole (BTZ) is widely used in organic emitters due to its rigid planar structure which will benefit the emission performance. At present, the chemical structures of organic emitters based on BTZ skeleton are mostly dominated by the symmetric D-A-D configuration. Herein, we designed and synthesized a serial of asymmetric donor-acceptor-acceptor (D-A-A′)-type fluorescence emitters with the hybridized local and charge-transfer (HLCT) excited state feature. Due to its extended π-conjugation, the D-A-A′ type molecular architecture is conducive to enhancing intramolecular charge transfer and achieving redshift of emitter. Notably, the emission of OLED devices can be finely tuned from green to deep red by varying the doping concentrations of these fluorescent emitters within the host material, thereby enabling a broad spectrum of light colors. Moreover, it is worth highlighting that the introduction of triphenylamine groups can enable devices at much higher doping levels to achieve higher EQEs. Compared with the maximum EQE of 3.1 % for the10 wt% doped OLED based on 7b, the maximum EQEs of devices based on 7b at the doping concentration of 50 wt% and 100 wt% increase to 4.8 % and 3.5 %, respectively. Especially, the non-doped OLED based on 7b exhibits excellent red color purity with the CIE coordinate of (0.63, 0.36), which is very close to the Rec. 709 standard red color CIE coordinate (0.64, 0.33).</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"137 ","pages":"Article 107182"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of donor-acceptor-acceptor (D-A-A′)-type fluorescence emitters based on benzothiadiazole with the hybridized local and charge-transfer (HLCT) excited state feature for green to deep-red emitting OLEDs\",\"authors\":\"Shipan Xu , Xuyang Du , Xiaolong Yang , Huaiteng Hang , Jun Xi , Guijiang Zhou , Yuanhui Sun\",\"doi\":\"10.1016/j.orgel.2024.107182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organic light-emitting diodes (OLEDs) have significant applications in solid-state lightings and flat-panel displays. The development of novel organic emitters to meet the demands of high-performance OLEDs is attracting much attention. The electron withdrawing group benzothiadiazole (BTZ) is widely used in organic emitters due to its rigid planar structure which will benefit the emission performance. At present, the chemical structures of organic emitters based on BTZ skeleton are mostly dominated by the symmetric D-A-D configuration. Herein, we designed and synthesized a serial of asymmetric donor-acceptor-acceptor (D-A-A′)-type fluorescence emitters with the hybridized local and charge-transfer (HLCT) excited state feature. Due to its extended π-conjugation, the D-A-A′ type molecular architecture is conducive to enhancing intramolecular charge transfer and achieving redshift of emitter. Notably, the emission of OLED devices can be finely tuned from green to deep red by varying the doping concentrations of these fluorescent emitters within the host material, thereby enabling a broad spectrum of light colors. Moreover, it is worth highlighting that the introduction of triphenylamine groups can enable devices at much higher doping levels to achieve higher EQEs. Compared with the maximum EQE of 3.1 % for the10 wt% doped OLED based on 7b, the maximum EQEs of devices based on 7b at the doping concentration of 50 wt% and 100 wt% increase to 4.8 % and 3.5 %, respectively. Especially, the non-doped OLED based on 7b exhibits excellent red color purity with the CIE coordinate of (0.63, 0.36), which is very close to the Rec. 709 standard red color CIE coordinate (0.64, 0.33).</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"137 \",\"pages\":\"Article 107182\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001939\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001939","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of donor-acceptor-acceptor (D-A-A′)-type fluorescence emitters based on benzothiadiazole with the hybridized local and charge-transfer (HLCT) excited state feature for green to deep-red emitting OLEDs
Organic light-emitting diodes (OLEDs) have significant applications in solid-state lightings and flat-panel displays. The development of novel organic emitters to meet the demands of high-performance OLEDs is attracting much attention. The electron withdrawing group benzothiadiazole (BTZ) is widely used in organic emitters due to its rigid planar structure which will benefit the emission performance. At present, the chemical structures of organic emitters based on BTZ skeleton are mostly dominated by the symmetric D-A-D configuration. Herein, we designed and synthesized a serial of asymmetric donor-acceptor-acceptor (D-A-A′)-type fluorescence emitters with the hybridized local and charge-transfer (HLCT) excited state feature. Due to its extended π-conjugation, the D-A-A′ type molecular architecture is conducive to enhancing intramolecular charge transfer and achieving redshift of emitter. Notably, the emission of OLED devices can be finely tuned from green to deep red by varying the doping concentrations of these fluorescent emitters within the host material, thereby enabling a broad spectrum of light colors. Moreover, it is worth highlighting that the introduction of triphenylamine groups can enable devices at much higher doping levels to achieve higher EQEs. Compared with the maximum EQE of 3.1 % for the10 wt% doped OLED based on 7b, the maximum EQEs of devices based on 7b at the doping concentration of 50 wt% and 100 wt% increase to 4.8 % and 3.5 %, respectively. Especially, the non-doped OLED based on 7b exhibits excellent red color purity with the CIE coordinate of (0.63, 0.36), which is very close to the Rec. 709 standard red color CIE coordinate (0.64, 0.33).
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.