基于安全节能混沌瞪羚的移动自组织网络优化路由协议

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Gajendra Kumar Ahirwar, Ratish Agarwal, Anjana Pandey
{"title":"基于安全节能混沌瞪羚的移动自组织网络优化路由协议","authors":"Gajendra Kumar Ahirwar,&nbsp;Ratish Agarwal,&nbsp;Anjana Pandey","doi":"10.1016/j.suscom.2025.101086","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol (SE<sup>2</sup>CG-ORP) is proposed to enhance the security for routing. The Feistel Structured Tiny Encryption Scheme (FS_TES) performs encryption after the data packets are initially created to enhance their secrecy and security. The nodes are then grouped using the K-Means Clustering technique to reduce network communication lag. The Type-II Fuzzy-C-Means technique considers high energy, trust value, and node centrality when selecting the cluster leader. The chosen cluster head sends the data packets to the base station using the Secured Energy Efficient Chaotic Gazelle-based Optimized Routing Protocol (SE2CG-ORP). Here, the residual energy and node distance parameters are satisfied using the Chaotic Gazelle Optimization (CGO) method to identify the most effective route for data transmission. The proposed model is compared to several current models in the results section using a variety of performance metrics, including PDR, residual energy, throughput, encryption and decryption times, delays, and network lifespan. By varying the number of rounds, the proposed approach obtained 62 Mbps, 96.65 %, and 92.07 % of throughput, residual energy, and PDR. Moreover, 0.77 ms of delay is obtained by varying the number of nodes. The PDR value of 79 % and the network lifespan of 1473.63 h were acquired by varying the number of nodes. The consumed energy of the network is 44.59 J, while the encryption and decryption times are 1831.36 ms and 1641.48 ms.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101086"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol in mobile ad-hoc network\",\"authors\":\"Gajendra Kumar Ahirwar,&nbsp;Ratish Agarwal,&nbsp;Anjana Pandey\",\"doi\":\"10.1016/j.suscom.2025.101086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, a Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol (SE<sup>2</sup>CG-ORP) is proposed to enhance the security for routing. The Feistel Structured Tiny Encryption Scheme (FS_TES) performs encryption after the data packets are initially created to enhance their secrecy and security. The nodes are then grouped using the K-Means Clustering technique to reduce network communication lag. The Type-II Fuzzy-C-Means technique considers high energy, trust value, and node centrality when selecting the cluster leader. The chosen cluster head sends the data packets to the base station using the Secured Energy Efficient Chaotic Gazelle-based Optimized Routing Protocol (SE2CG-ORP). Here, the residual energy and node distance parameters are satisfied using the Chaotic Gazelle Optimization (CGO) method to identify the most effective route for data transmission. The proposed model is compared to several current models in the results section using a variety of performance metrics, including PDR, residual energy, throughput, encryption and decryption times, delays, and network lifespan. By varying the number of rounds, the proposed approach obtained 62 Mbps, 96.65 %, and 92.07 % of throughput, residual energy, and PDR. Moreover, 0.77 ms of delay is obtained by varying the number of nodes. The PDR value of 79 % and the network lifespan of 1473.63 h were acquired by varying the number of nodes. The consumed energy of the network is 44.59 J, while the encryption and decryption times are 1831.36 ms and 1641.48 ms.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"46 \",\"pages\":\"Article 101086\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221053792500006X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221053792500006X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了提高路由的安全性,本文提出了一种基于安全节能混沌瞪羚的优化路由协议(SE2CG-ORP)。festel结构化微型加密方案(FS_TES)在数据包最初创建后执行加密,以增强其保密性和安全性。然后使用K-Means聚类技术对节点进行分组,以减少网络通信延迟。ii型模糊c均值技术在选择集群领导者时考虑了高能量、信任值和节点中心性。所选择的簇头使用基于安全节能混沌瞪羚的优化路由协议(SE2CG-ORP)将数据包发送到基站。在此,利用混沌瞪羚优化(CGO)方法满足剩余能量和节点距离参数,确定最有效的数据传输路径。在结果部分中,使用各种性能指标(包括PDR、剩余能量、吞吐量、加密和解密时间、延迟和网络寿命)将建议的模型与当前的几个模型进行比较。通过改变轮数,该方法获得62 Mbps, 96.65 %和92.07 %的吞吐量、剩余能量和PDR。通过改变节点数,延时为0.77 ms。通过改变节点数得到的PDR值为79 %,网络寿命为1473.63 h。网络消耗能量为44.59 J,加解密时间分别为1831.36 ms和1641.48 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol in mobile ad-hoc network
In this research, a Secured Energy Efficient Chaotic Gazelle based Optimized Routing Protocol (SE2CG-ORP) is proposed to enhance the security for routing. The Feistel Structured Tiny Encryption Scheme (FS_TES) performs encryption after the data packets are initially created to enhance their secrecy and security. The nodes are then grouped using the K-Means Clustering technique to reduce network communication lag. The Type-II Fuzzy-C-Means technique considers high energy, trust value, and node centrality when selecting the cluster leader. The chosen cluster head sends the data packets to the base station using the Secured Energy Efficient Chaotic Gazelle-based Optimized Routing Protocol (SE2CG-ORP). Here, the residual energy and node distance parameters are satisfied using the Chaotic Gazelle Optimization (CGO) method to identify the most effective route for data transmission. The proposed model is compared to several current models in the results section using a variety of performance metrics, including PDR, residual energy, throughput, encryption and decryption times, delays, and network lifespan. By varying the number of rounds, the proposed approach obtained 62 Mbps, 96.65 %, and 92.07 % of throughput, residual energy, and PDR. Moreover, 0.77 ms of delay is obtained by varying the number of nodes. The PDR value of 79 % and the network lifespan of 1473.63 h were acquired by varying the number of nodes. The consumed energy of the network is 44.59 J, while the encryption and decryption times are 1831.36 ms and 1641.48 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信