使用N200和P300事件相关电位和机器学习估计双相情感障碍的自杀风险:一项试点研究

Q3 Psychology
Chaewon Lee , Kathleen M. Gates , Jinsoo Chun , Raed Al Kontar , Masoud Kamali , Melvin G. McInnis , Patricia Deldin
{"title":"使用N200和P300事件相关电位和机器学习估计双相情感障碍的自杀风险:一项试点研究","authors":"Chaewon Lee ,&nbsp;Kathleen M. Gates ,&nbsp;Jinsoo Chun ,&nbsp;Raed Al Kontar ,&nbsp;Masoud Kamali ,&nbsp;Melvin G. McInnis ,&nbsp;Patricia Deldin","doi":"10.1016/j.jadr.2025.100875","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Individuals with bipolar disorder (BD) face an elevated suicide risk. While machine learning (ML) has been used to estimate suicide risk in BD, early predictors like demographics, past attempts, and self-reports are limited by their inability to provide individualized risk estimation, overemphasis on past attempters, and susceptibility to personal biases, underscoring the need for effective, objective markers. Event-related potentials (ERPs), widely studied in suicide research, remain unexplored in ML applications for BD. This pilot study applies ML to N200 and P300 ERP components from a response inhibition paradigm to estimate suicide risk in BD.</div></div><div><h3>Methods</h3><div>We collected N200 and P300 peak amplitude and latency data from 57 Type I BD individuals (22 attempters and 35 non-attempters). Our two-stage ML approach employed adaptive Lasso logistic regression for feature selection, followed by deep neural network (DNN) modeling for classification. For post-hoc analysis, we used explainable AI to interpret ERP feature importance in top-performing DNN predictions.</div></div><div><h3>Results</h3><div>Key features were exclusively identified from latency data. Notably, N200 latency DNN models effectively distinguished attempters from non-attempters, achieving AUCs of 78.2–89.3 %. Explainable AI pinpointed a right visual hemifield Go stimuli-induced ERP from the left-parietal site as the most predictive.</div></div><div><h3>Conclusion</h3><div>Our ERP-ML approach showed promising preliminary results, with N200 latency identified as a potential suicide marker in BD. Larger samples are required to validate these results. While findings are sample-specific, the methodological approach may have broader applicability and could inform future research to refine clinical strategies for detecting high-risk BD individuals.</div></div>","PeriodicalId":52768,"journal":{"name":"Journal of Affective Disorders Reports","volume":"20 ","pages":"Article 100875"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suicide risk estimation in bipolar disorder using N200 and P300 event-related potentials and machine learning: A pilot study\",\"authors\":\"Chaewon Lee ,&nbsp;Kathleen M. Gates ,&nbsp;Jinsoo Chun ,&nbsp;Raed Al Kontar ,&nbsp;Masoud Kamali ,&nbsp;Melvin G. McInnis ,&nbsp;Patricia Deldin\",\"doi\":\"10.1016/j.jadr.2025.100875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Individuals with bipolar disorder (BD) face an elevated suicide risk. While machine learning (ML) has been used to estimate suicide risk in BD, early predictors like demographics, past attempts, and self-reports are limited by their inability to provide individualized risk estimation, overemphasis on past attempters, and susceptibility to personal biases, underscoring the need for effective, objective markers. Event-related potentials (ERPs), widely studied in suicide research, remain unexplored in ML applications for BD. This pilot study applies ML to N200 and P300 ERP components from a response inhibition paradigm to estimate suicide risk in BD.</div></div><div><h3>Methods</h3><div>We collected N200 and P300 peak amplitude and latency data from 57 Type I BD individuals (22 attempters and 35 non-attempters). Our two-stage ML approach employed adaptive Lasso logistic regression for feature selection, followed by deep neural network (DNN) modeling for classification. For post-hoc analysis, we used explainable AI to interpret ERP feature importance in top-performing DNN predictions.</div></div><div><h3>Results</h3><div>Key features were exclusively identified from latency data. Notably, N200 latency DNN models effectively distinguished attempters from non-attempters, achieving AUCs of 78.2–89.3 %. Explainable AI pinpointed a right visual hemifield Go stimuli-induced ERP from the left-parietal site as the most predictive.</div></div><div><h3>Conclusion</h3><div>Our ERP-ML approach showed promising preliminary results, with N200 latency identified as a potential suicide marker in BD. Larger samples are required to validate these results. While findings are sample-specific, the methodological approach may have broader applicability and could inform future research to refine clinical strategies for detecting high-risk BD individuals.</div></div>\",\"PeriodicalId\":52768,\"journal\":{\"name\":\"Journal of Affective Disorders Reports\",\"volume\":\"20 \",\"pages\":\"Article 100875\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Affective Disorders Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666915325000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Affective Disorders Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666915325000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

摘要

背景:双相情感障碍(BD)患者面临更高的自杀风险。虽然机器学习(ML)已被用于估计双相障碍患者的自杀风险,但早期的预测指标,如人口统计数据、过去的自杀企图和自我报告,由于无法提供个性化的风险估计,过度强调过去的自杀企图,以及容易受到个人偏见的影响,强调了对有效、客观标记的需求。事件相关电位(ERPs)在自杀研究中得到了广泛的研究,但在机器学习在BD中的应用仍未得到探索。本初步研究将机器学习应用于反应抑制范式中的N200和P300 ERP组件,以估计BD的自杀风险。方法我们收集了57例I型BD患者(22例企图者和35例非企图者)的N200和P300峰值振幅和潜伏期数据。我们的两阶段机器学习方法采用自适应Lasso逻辑回归进行特征选择,然后使用深度神经网络(DNN)建模进行分类。对于事后分析,我们使用可解释的人工智能来解释表现最好的深度神经网络预测中的ERP特征重要性。结果关键特征完全由延迟数据确定。值得注意的是,N200延迟DNN模型有效地区分了尝试者和非尝试者,达到了78.2 - 89.3%的auc。可解释的人工智能指出,来自左顶叶部位的右视半球Go刺激诱导的ERP是最具预测性的。我们的ERP-ML方法显示了有希望的初步结果,N200潜伏期被确定为BD的潜在自杀标志物,需要更大的样本来验证这些结果。虽然研究结果是样本特异性的,但方法方法可能具有更广泛的适用性,并可以为未来的研究提供信息,以改进检测高危双相障碍患者的临床策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suicide risk estimation in bipolar disorder using N200 and P300 event-related potentials and machine learning: A pilot study

Background

Individuals with bipolar disorder (BD) face an elevated suicide risk. While machine learning (ML) has been used to estimate suicide risk in BD, early predictors like demographics, past attempts, and self-reports are limited by their inability to provide individualized risk estimation, overemphasis on past attempters, and susceptibility to personal biases, underscoring the need for effective, objective markers. Event-related potentials (ERPs), widely studied in suicide research, remain unexplored in ML applications for BD. This pilot study applies ML to N200 and P300 ERP components from a response inhibition paradigm to estimate suicide risk in BD.

Methods

We collected N200 and P300 peak amplitude and latency data from 57 Type I BD individuals (22 attempters and 35 non-attempters). Our two-stage ML approach employed adaptive Lasso logistic regression for feature selection, followed by deep neural network (DNN) modeling for classification. For post-hoc analysis, we used explainable AI to interpret ERP feature importance in top-performing DNN predictions.

Results

Key features were exclusively identified from latency data. Notably, N200 latency DNN models effectively distinguished attempters from non-attempters, achieving AUCs of 78.2–89.3 %. Explainable AI pinpointed a right visual hemifield Go stimuli-induced ERP from the left-parietal site as the most predictive.

Conclusion

Our ERP-ML approach showed promising preliminary results, with N200 latency identified as a potential suicide marker in BD. Larger samples are required to validate these results. While findings are sample-specific, the methodological approach may have broader applicability and could inform future research to refine clinical strategies for detecting high-risk BD individuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Affective Disorders Reports
Journal of Affective Disorders Reports Psychology-Clinical Psychology
CiteScore
3.80
自引率
0.00%
发文量
137
审稿时长
134 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信