具有硬势的非截止Vlasov-Poisson-Boltzmann系统的解析平滑效应

IF 2.3 2区 数学 Q1 MATHEMATICS
Lvqiao Liu , Hao Wang
{"title":"具有硬势的非截止Vlasov-Poisson-Boltzmann系统的解析平滑效应","authors":"Lvqiao Liu ,&nbsp;Hao Wang","doi":"10.1016/j.jde.2025.01.087","DOIUrl":null,"url":null,"abstract":"<div><div>We study the regularization effect for the non-cutoff Vlasov-Poisson-Boltzmann system with hard potentials in the perturbation setting. Inspired by the techniques developed in Chen-Li-Xu <span><span>[13]</span></span>, we prove the analytic regularity in both space and velocity variables when the initial data has mild regularity.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 442-477"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic smoothing effect for the non-cutoff Vlasov-Poisson-Boltzmann system with hard potentials\",\"authors\":\"Lvqiao Liu ,&nbsp;Hao Wang\",\"doi\":\"10.1016/j.jde.2025.01.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the regularization effect for the non-cutoff Vlasov-Poisson-Boltzmann system with hard potentials in the perturbation setting. Inspired by the techniques developed in Chen-Li-Xu <span><span>[13]</span></span>, we prove the analytic regularity in both space and velocity variables when the initial data has mild regularity.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"427 \",\"pages\":\"Pages 442-477\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625001007\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有硬势的非截止vlasov -泊松-玻尔兹曼系统在扰动条件下的正则化效应。受陈立旭b[13]所开发的技术的启发,我们证明了当初始数据具有轻微规律性时,空间变量和速度变量的解析正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic smoothing effect for the non-cutoff Vlasov-Poisson-Boltzmann system with hard potentials
We study the regularization effect for the non-cutoff Vlasov-Poisson-Boltzmann system with hard potentials in the perturbation setting. Inspired by the techniques developed in Chen-Li-Xu [13], we prove the analytic regularity in both space and velocity variables when the initial data has mild regularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信