一种集成的堆叠卷积神经网络和基于levy飞行的蚱蜢优化算法用于心脏病预测

Syed Muhammad Salman Bukhari , Muhammad Hamza Zafar , Syed Kumayl Raza Moosavi , Majad Mansoor , Filippo Sanfilippo
{"title":"一种集成的堆叠卷积神经网络和基于levy飞行的蚱蜢优化算法用于心脏病预测","authors":"Syed Muhammad Salman Bukhari ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Syed Kumayl Raza Moosavi ,&nbsp;Majad Mansoor ,&nbsp;Filippo Sanfilippo","doi":"10.1016/j.health.2024.100374","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular disease is the leading cause of death worldwide, including critical conditions such as blood vessel blockage, heart failure, and stroke. Accurate and early prediction of heart disease remains a significant challenge due to the complexity of symptoms and the variability of contributing factors. This study proposes a novel hybrid model integrating a Stacked Convolutional Neural Network (SCNN) with the Levy Flight-based Grasshopper Optimization Algorithm (LFGOA) to address this challenge. The SCNN provides robust feature extraction, while LFGOA enhances the model by optimizing hyperparameters, improving classification accuracy, and reducing overfitting. The proposed approach is evaluated using four publicly available heart disease datasets, each representing diverse clinical and demographic features. Compared to traditional classifiers, including Regression Trees, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, and standard Neural Networks, the SCNN-LFGOA consistently outperforms these methods. The results highlight that the SCNN-LFGOA achieves an average accuracy of 99%, with significant improvements in specificity, sensitivity, and F1-Score, showcasing its adaptability and robustness across datasets. This study highlights the SCNN-LFGOA's potential as a transformative tool for early and accurate heart disease prediction, contributing to improved patient outcomes and more efficient healthcare resource utilization. By combining deep learning with an advanced optimization technique, this research introduces a scalable and effective solution to a critical healthcare problem.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100374"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated stacked convolutional neural network and the levy flight-based grasshopper optimization algorithm for predicting heart disease\",\"authors\":\"Syed Muhammad Salman Bukhari ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Syed Kumayl Raza Moosavi ,&nbsp;Majad Mansoor ,&nbsp;Filippo Sanfilippo\",\"doi\":\"10.1016/j.health.2024.100374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardiovascular disease is the leading cause of death worldwide, including critical conditions such as blood vessel blockage, heart failure, and stroke. Accurate and early prediction of heart disease remains a significant challenge due to the complexity of symptoms and the variability of contributing factors. This study proposes a novel hybrid model integrating a Stacked Convolutional Neural Network (SCNN) with the Levy Flight-based Grasshopper Optimization Algorithm (LFGOA) to address this challenge. The SCNN provides robust feature extraction, while LFGOA enhances the model by optimizing hyperparameters, improving classification accuracy, and reducing overfitting. The proposed approach is evaluated using four publicly available heart disease datasets, each representing diverse clinical and demographic features. Compared to traditional classifiers, including Regression Trees, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, and standard Neural Networks, the SCNN-LFGOA consistently outperforms these methods. The results highlight that the SCNN-LFGOA achieves an average accuracy of 99%, with significant improvements in specificity, sensitivity, and F1-Score, showcasing its adaptability and robustness across datasets. This study highlights the SCNN-LFGOA's potential as a transformative tool for early and accurate heart disease prediction, contributing to improved patient outcomes and more efficient healthcare resource utilization. By combining deep learning with an advanced optimization technique, this research introduces a scalable and effective solution to a critical healthcare problem.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"7 \",\"pages\":\"Article 100374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是世界范围内导致死亡的主要原因,包括血管阻塞、心力衰竭和中风等严重疾病。由于症状的复杂性和促成因素的可变性,对心脏病的准确和早期预测仍然是一项重大挑战。本研究提出了一种新的混合模型,将堆叠卷积神经网络(SCNN)与Levy基于飞行的蚱蜢优化算法(LFGOA)相结合,以解决这一挑战。SCNN提供鲁棒性特征提取,而LFGOA通过优化超参数、提高分类精度和减少过拟合来增强模型。所提出的方法使用四个公开可用的心脏病数据集进行评估,每个数据集代表不同的临床和人口统计学特征。与传统分类器(包括回归树、支持向量机、逻辑回归、k近邻和标准神经网络)相比,SCNN-LFGOA始终优于这些方法。结果表明,SCNN-LFGOA的平均准确率达到99%,特异性、敏感性和F1-Score均有显著提高,显示出其在数据集上的适应性和鲁棒性。这项研究强调了SCNN-LFGOA作为早期和准确的心脏病预测的变革性工具的潜力,有助于改善患者的预后和更有效的医疗资源利用。通过将深度学习与先进的优化技术相结合,本研究为关键的医疗保健问题引入了可扩展且有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrated stacked convolutional neural network and the levy flight-based grasshopper optimization algorithm for predicting heart disease
Cardiovascular disease is the leading cause of death worldwide, including critical conditions such as blood vessel blockage, heart failure, and stroke. Accurate and early prediction of heart disease remains a significant challenge due to the complexity of symptoms and the variability of contributing factors. This study proposes a novel hybrid model integrating a Stacked Convolutional Neural Network (SCNN) with the Levy Flight-based Grasshopper Optimization Algorithm (LFGOA) to address this challenge. The SCNN provides robust feature extraction, while LFGOA enhances the model by optimizing hyperparameters, improving classification accuracy, and reducing overfitting. The proposed approach is evaluated using four publicly available heart disease datasets, each representing diverse clinical and demographic features. Compared to traditional classifiers, including Regression Trees, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, and standard Neural Networks, the SCNN-LFGOA consistently outperforms these methods. The results highlight that the SCNN-LFGOA achieves an average accuracy of 99%, with significant improvements in specificity, sensitivity, and F1-Score, showcasing its adaptability and robustness across datasets. This study highlights the SCNN-LFGOA's potential as a transformative tool for early and accurate heart disease prediction, contributing to improved patient outcomes and more efficient healthcare resource utilization. By combining deep learning with an advanced optimization technique, this research introduces a scalable and effective solution to a critical healthcare problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信