Python控制的一个高分辨率近红外光谱仪,供大学生使用

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Joshua Heuvel-Horwitz , Eisen C. Gross , Trevor J. Sears
{"title":"Python控制的一个高分辨率近红外光谱仪,供大学生使用","authors":"Joshua Heuvel-Horwitz ,&nbsp;Eisen C. Gross ,&nbsp;Trevor J. Sears","doi":"10.1016/j.jms.2024.111983","DOIUrl":null,"url":null,"abstract":"<div><div>We describe a project designed to introduce senior undergraduate chemistry and physics majors to the use of more advanced laser spectroscopic techniques and the interpretation of spectroscopic line shapes. We present a spectrometer design comprising modular components that are controlled using a single Python program with a graphical user interface (GUI). Unlike commercial Fourier transform infrared spectrometers typically used in undergraduate laboratories, this instrument can measure much higher resolution (approximately 0.001 cm<sup>−1</sup> compared to 0.5 cm<sup>−1</sup>) data, with significantly higher (10<sup>−4</sup>) fractional absorption sensitivity. The modular, open<span><math><mo>−</mo></math></span>table design allows for easy viewing of optical components and better understanding of the operation of the instrument. We demonstrate the functionality of the spectrometer by measuring the P(23) rotational-vibrational line of the <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> combination band of acetylene at various pressures to extract a self-pressure broadening coefficient. An undergraduate laboratory assignment could also include estimating the Boltzmann constant from data for low pressure Doppler-broadened lines. An additional Python program with a GUI was built for user friendly least squares fitting of collected data. All Python codes developed are freely available on GitLab.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111983"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Python control of a high-resolution near-infrared spectrometer for undergraduate use\",\"authors\":\"Joshua Heuvel-Horwitz ,&nbsp;Eisen C. Gross ,&nbsp;Trevor J. Sears\",\"doi\":\"10.1016/j.jms.2024.111983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We describe a project designed to introduce senior undergraduate chemistry and physics majors to the use of more advanced laser spectroscopic techniques and the interpretation of spectroscopic line shapes. We present a spectrometer design comprising modular components that are controlled using a single Python program with a graphical user interface (GUI). Unlike commercial Fourier transform infrared spectrometers typically used in undergraduate laboratories, this instrument can measure much higher resolution (approximately 0.001 cm<sup>−1</sup> compared to 0.5 cm<sup>−1</sup>) data, with significantly higher (10<sup>−4</sup>) fractional absorption sensitivity. The modular, open<span><math><mo>−</mo></math></span>table design allows for easy viewing of optical components and better understanding of the operation of the instrument. We demonstrate the functionality of the spectrometer by measuring the P(23) rotational-vibrational line of the <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> combination band of acetylene at various pressures to extract a self-pressure broadening coefficient. An undergraduate laboratory assignment could also include estimating the Boltzmann constant from data for low pressure Doppler-broadened lines. An additional Python program with a GUI was built for user friendly least squares fitting of collected data. All Python codes developed are freely available on GitLab.</div></div>\",\"PeriodicalId\":16367,\"journal\":{\"name\":\"Journal of Molecular Spectroscopy\",\"volume\":\"407 \",\"pages\":\"Article 111983\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Spectroscopy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022285224001103\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224001103","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一个项目,旨在向化学和物理专业的大四本科生介绍更先进的激光光谱技术的使用和光谱线形状的解释。我们提出了一种由模块化组件组成的光谱仪设计,这些组件使用带有图形用户界面(GUI)的单个Python程序进行控制。与通常用于本科实验室的商用傅里叶变换红外光谱仪不同,该仪器可以测量更高的分辨率(大约0.001 cm−1,而不是0.5 cm−1)数据,具有显著更高的分数吸收灵敏度(10−4)。模块化,开放式设计允许方便地查看光学元件和更好地了解仪器的操作。我们通过测量不同压力下乙炔ν1+ν3组合带的P(23)旋转-振动谱线来证明光谱仪的功能,以提取自压展宽系数。本科生的实验室作业也可以包括从低压多普勒加宽线的数据估计玻尔兹曼常数。另外还构建了一个带有GUI的Python程序,用于对收集的数据进行用户友好的最小二乘拟合。所有开发的Python代码都可以在GitLab上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Python control of a high-resolution near-infrared spectrometer for undergraduate use

Python control of a high-resolution near-infrared spectrometer for undergraduate use
We describe a project designed to introduce senior undergraduate chemistry and physics majors to the use of more advanced laser spectroscopic techniques and the interpretation of spectroscopic line shapes. We present a spectrometer design comprising modular components that are controlled using a single Python program with a graphical user interface (GUI). Unlike commercial Fourier transform infrared spectrometers typically used in undergraduate laboratories, this instrument can measure much higher resolution (approximately 0.001 cm−1 compared to 0.5 cm−1) data, with significantly higher (10−4) fractional absorption sensitivity. The modular, opentable design allows for easy viewing of optical components and better understanding of the operation of the instrument. We demonstrate the functionality of the spectrometer by measuring the P(23) rotational-vibrational line of the ν1+ν3 combination band of acetylene at various pressures to extract a self-pressure broadening coefficient. An undergraduate laboratory assignment could also include estimating the Boltzmann constant from data for low pressure Doppler-broadened lines. An additional Python program with a GUI was built for user friendly least squares fitting of collected data. All Python codes developed are freely available on GitLab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信