Ganesh Pandey , Sarah Lyden , Evan Franklin , Matthew Tom Harrison
{"title":"农业发电作为可持续发展目标的推动者:粮食安全、能源生产和减排的权衡和共同利益","authors":"Ganesh Pandey , Sarah Lyden , Evan Franklin , Matthew Tom Harrison","doi":"10.1016/j.resenv.2024.100186","DOIUrl":null,"url":null,"abstract":"<div><div>Agrivoltaic systems (AVS) – wherein solar photovoltaics (PV) and agriculture are co-located on the same land parcel – offer a sustainable approach to achieving the Sustainable Development Goals (SDGs) by enabling concurrent renewable electricity and agri-food production. Here, we elucidate plausible co-benefits and trade-offs of agri-food production and electricity generation in AVS across manifold socio-enviro-economic contexts, with the aim of understanding the contextualized interplay between AVS implementation and progress towards the SDGs. We modeled three AVS designs with varying solar panel densities (high, mid, low) at case study locations in Australia, Chad, and Iran using various models (System Advisor Model for PV and GrassGro for livestock systems). The findings suggest that in regions conducive to high biomass production per unit area, such as in parts of Australia, AVS design with high solar panel density can reduce meat production by almost 50%, which can jeopardize food security and impede achieving SDG 2 (Zero Hunger). In these regions, AVS design with low solar panel density enables meeting SDGs aligned with agri-food production and renewable energy generation. In contrast, in semi-arid regions, such as Iran, AVS design with a high density of solar panels can improve agricultural production via the alleviation of water deficit, thereby supporting the prioritization of solar power generation, with food production as a co-benefit. In developing countries such as Chad, AVS can enhance economic development by providing electricity, food, and financial benefits. We call for policymakers to incentivize AVS deployment in such regions and stimulate public and private investment to enable progress towards SDGs.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"19 ","pages":"Article 100186"},"PeriodicalIF":12.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agrivoltaics as an SDG enabler: Trade-offs and co-benefits for food security, energy generation and emissions mitigation\",\"authors\":\"Ganesh Pandey , Sarah Lyden , Evan Franklin , Matthew Tom Harrison\",\"doi\":\"10.1016/j.resenv.2024.100186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Agrivoltaic systems (AVS) – wherein solar photovoltaics (PV) and agriculture are co-located on the same land parcel – offer a sustainable approach to achieving the Sustainable Development Goals (SDGs) by enabling concurrent renewable electricity and agri-food production. Here, we elucidate plausible co-benefits and trade-offs of agri-food production and electricity generation in AVS across manifold socio-enviro-economic contexts, with the aim of understanding the contextualized interplay between AVS implementation and progress towards the SDGs. We modeled three AVS designs with varying solar panel densities (high, mid, low) at case study locations in Australia, Chad, and Iran using various models (System Advisor Model for PV and GrassGro for livestock systems). The findings suggest that in regions conducive to high biomass production per unit area, such as in parts of Australia, AVS design with high solar panel density can reduce meat production by almost 50%, which can jeopardize food security and impede achieving SDG 2 (Zero Hunger). In these regions, AVS design with low solar panel density enables meeting SDGs aligned with agri-food production and renewable energy generation. In contrast, in semi-arid regions, such as Iran, AVS design with a high density of solar panels can improve agricultural production via the alleviation of water deficit, thereby supporting the prioritization of solar power generation, with food production as a co-benefit. In developing countries such as Chad, AVS can enhance economic development by providing electricity, food, and financial benefits. We call for policymakers to incentivize AVS deployment in such regions and stimulate public and private investment to enable progress towards SDGs.</div></div>\",\"PeriodicalId\":34479,\"journal\":{\"name\":\"Resources Environment and Sustainability\",\"volume\":\"19 \",\"pages\":\"Article 100186\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Environment and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666916124000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916124000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Agrivoltaics as an SDG enabler: Trade-offs and co-benefits for food security, energy generation and emissions mitigation
Agrivoltaic systems (AVS) – wherein solar photovoltaics (PV) and agriculture are co-located on the same land parcel – offer a sustainable approach to achieving the Sustainable Development Goals (SDGs) by enabling concurrent renewable electricity and agri-food production. Here, we elucidate plausible co-benefits and trade-offs of agri-food production and electricity generation in AVS across manifold socio-enviro-economic contexts, with the aim of understanding the contextualized interplay between AVS implementation and progress towards the SDGs. We modeled three AVS designs with varying solar panel densities (high, mid, low) at case study locations in Australia, Chad, and Iran using various models (System Advisor Model for PV and GrassGro for livestock systems). The findings suggest that in regions conducive to high biomass production per unit area, such as in parts of Australia, AVS design with high solar panel density can reduce meat production by almost 50%, which can jeopardize food security and impede achieving SDG 2 (Zero Hunger). In these regions, AVS design with low solar panel density enables meeting SDGs aligned with agri-food production and renewable energy generation. In contrast, in semi-arid regions, such as Iran, AVS design with a high density of solar panels can improve agricultural production via the alleviation of water deficit, thereby supporting the prioritization of solar power generation, with food production as a co-benefit. In developing countries such as Chad, AVS can enhance economic development by providing electricity, food, and financial benefits. We call for policymakers to incentivize AVS deployment in such regions and stimulate public and private investment to enable progress towards SDGs.