从蛇形到孤立体:离散光学腔中的单活性位近似

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
R. Kusdiantara , H. Susanto , A.R. Champneys
{"title":"从蛇形到孤立体:离散光学腔中的单活性位近似","authors":"R. Kusdiantara ,&nbsp;H. Susanto ,&nbsp;A.R. Champneys","doi":"10.1016/j.wavemoti.2025.103495","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate time-independent solutions of a discrete optical cavity model featuring saturable Kerr nonlinearity, a discrete version of the Lugiato–Lefever equation. This model supports continuous wave (uniform) and localized (discrete soliton) solutions. Stationary bright solitons arise through the interaction of dark and bright uniform states, forming a homoclinic snaking bifurcation diagram within the Pomeau pinning region. As the system approaches the anti-continuum limit (weak coupling), this snaking bifurcation widens and transitions into <span><math><mo>⊂</mo></math></span>-shaped isolas. We propose a one-active-site approximation that effectively captures the system’s behavior in this regime. The approximation also provides insight into the stability properties of soliton states. Numerical continuation and spectral analysis confirm the accuracy of this semianalytical method, showing excellent agreement with the full model.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"134 ","pages":"Article 103495"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From snaking to isolas: A one-active-site approximation in discrete optical cavities\",\"authors\":\"R. Kusdiantara ,&nbsp;H. Susanto ,&nbsp;A.R. Champneys\",\"doi\":\"10.1016/j.wavemoti.2025.103495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate time-independent solutions of a discrete optical cavity model featuring saturable Kerr nonlinearity, a discrete version of the Lugiato–Lefever equation. This model supports continuous wave (uniform) and localized (discrete soliton) solutions. Stationary bright solitons arise through the interaction of dark and bright uniform states, forming a homoclinic snaking bifurcation diagram within the Pomeau pinning region. As the system approaches the anti-continuum limit (weak coupling), this snaking bifurcation widens and transitions into <span><math><mo>⊂</mo></math></span>-shaped isolas. We propose a one-active-site approximation that effectively captures the system’s behavior in this regime. The approximation also provides insight into the stability properties of soliton states. Numerical continuation and spectral analysis confirm the accuracy of this semianalytical method, showing excellent agreement with the full model.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"134 \",\"pages\":\"Article 103495\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016521252500006X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252500006X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有饱和Kerr非线性的离散光学腔模型的时间无关解,这是Lugiato-Lefever方程的离散版本。该模型支持连续波(均匀)和局部化(离散孤子)解。静止的亮孤子通过暗均匀态和亮均匀态的相互作用而产生,在波马乌钉定区内形成了一个同斜的蛇形分岔图。当系统接近反连续统极限(弱耦合)时,这种蛇形分岔变宽并转变为∧形孤立体。我们提出了一个单活性点近似,有效地捕获了系统在该状态下的行为。这个近似也提供了对孤子状态稳定性的洞察。数值延拓和谱分析证实了该半解析方法的准确性,与全模型具有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From snaking to isolas: A one-active-site approximation in discrete optical cavities
We investigate time-independent solutions of a discrete optical cavity model featuring saturable Kerr nonlinearity, a discrete version of the Lugiato–Lefever equation. This model supports continuous wave (uniform) and localized (discrete soliton) solutions. Stationary bright solitons arise through the interaction of dark and bright uniform states, forming a homoclinic snaking bifurcation diagram within the Pomeau pinning region. As the system approaches the anti-continuum limit (weak coupling), this snaking bifurcation widens and transitions into -shaped isolas. We propose a one-active-site approximation that effectively captures the system’s behavior in this regime. The approximation also provides insight into the stability properties of soliton states. Numerical continuation and spectral analysis confirm the accuracy of this semianalytical method, showing excellent agreement with the full model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信