知识结构的维度

IF 2.2 4区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jean-Paul Doignon , Luca Stefanutti
{"title":"知识结构的维度","authors":"Jean-Paul Doignon ,&nbsp;Luca Stefanutti","doi":"10.1016/j.jmp.2024.102898","DOIUrl":null,"url":null,"abstract":"<div><div>A knowledge structure is inherently one-dimensional when its collection of states forms a chain. But how to define the dimension of a knowledge structure in general? We investigate four options: (i) the <em>ordinal dimension</em>, which is the dimension of the poset consisting of all states ordered by inclusion; (ii) for a knowledge space, the <em>spatial dimension</em> which is the least number of one-dimensional knowledge spaces which generate the space (a notion extending from learning spaces to knowledge spaces the dual of the convex dimension of an antimatroid); (iii) the <em>bidimension</em>, which is the bidimension of the membership relation from items to states, in either the intersection or the union version of the bidimension. Our results establish or disprove inequalities among the four dimension parameters for knowledge structures, for knowledge spaces, for terse knowledge structures, for terse knowledge spaces, and finally for learning spaces. We finally list some problems for future research.</div></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"124 ","pages":"Article 102898"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensions of knowledge structures\",\"authors\":\"Jean-Paul Doignon ,&nbsp;Luca Stefanutti\",\"doi\":\"10.1016/j.jmp.2024.102898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A knowledge structure is inherently one-dimensional when its collection of states forms a chain. But how to define the dimension of a knowledge structure in general? We investigate four options: (i) the <em>ordinal dimension</em>, which is the dimension of the poset consisting of all states ordered by inclusion; (ii) for a knowledge space, the <em>spatial dimension</em> which is the least number of one-dimensional knowledge spaces which generate the space (a notion extending from learning spaces to knowledge spaces the dual of the convex dimension of an antimatroid); (iii) the <em>bidimension</em>, which is the bidimension of the membership relation from items to states, in either the intersection or the union version of the bidimension. Our results establish or disprove inequalities among the four dimension parameters for knowledge structures, for knowledge spaces, for terse knowledge structures, for terse knowledge spaces, and finally for learning spaces. We finally list some problems for future research.</div></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"124 \",\"pages\":\"Article 102898\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249624000671\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000671","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

当一个知识结构的状态集合形成一条链时,它本质上是一维的。但是一般来说,如何定义知识结构的维度呢?我们研究了四种选项:(i)有序维度,它是由包含有序的所有状态组成的偏序集的维度;(ii)对于知识空间,指产生该空间的一维知识空间数量最少的空间维度(从学习空间扩展到知识空间的概念,即反矩阵的凸维的对偶);(iii)二维,这是从项目到状态的隶属关系的二维,在二维的交集或联合版本中。我们的结果建立或反驳了知识结构、知识空间、简洁知识结构、简洁知识空间和学习空间的四维参数之间的不等式。最后提出了一些有待进一步研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dimensions of knowledge structures

Dimensions of knowledge structures
A knowledge structure is inherently one-dimensional when its collection of states forms a chain. But how to define the dimension of a knowledge structure in general? We investigate four options: (i) the ordinal dimension, which is the dimension of the poset consisting of all states ordered by inclusion; (ii) for a knowledge space, the spatial dimension which is the least number of one-dimensional knowledge spaces which generate the space (a notion extending from learning spaces to knowledge spaces the dual of the convex dimension of an antimatroid); (iii) the bidimension, which is the bidimension of the membership relation from items to states, in either the intersection or the union version of the bidimension. Our results establish or disprove inequalities among the four dimension parameters for knowledge structures, for knowledge spaces, for terse knowledge structures, for terse knowledge spaces, and finally for learning spaces. We finally list some problems for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Psychology
Journal of Mathematical Psychology 医学-数学跨学科应用
CiteScore
3.70
自引率
11.10%
发文量
37
审稿时长
20.2 weeks
期刊介绍: The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome. Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation. The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology. Research Areas include: • Models for sensation and perception, learning, memory and thinking • Fundamental measurement and scaling • Decision making • Neural modeling and networks • Psychophysics and signal detection • Neuropsychological theories • Psycholinguistics • Motivational dynamics • Animal behavior • Psychometric theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信