Bingyang Kou , Qingmin Shi , Shuangming Wang , Qiang Sun , Shidong Cui , Xiaolong Yang , Xinyue Zhao , Junwei Qiao
{"title":"轴压对新疆煤热解行为的影响:对富焦油煤原位热解的启示","authors":"Bingyang Kou , Qingmin Shi , Shuangming Wang , Qiang Sun , Shidong Cui , Xiaolong Yang , Xinyue Zhao , Junwei Qiao","doi":"10.1016/j.fuproc.2024.108175","DOIUrl":null,"url":null,"abstract":"<div><div>Tar-rich coal in-situ pyrolysis (TCIP) is a green and low-carbon technology that extracts tar and gas from underground tar-rich coal seams. Overburden pressures are a crucial factor for TCIP that differs from conventional ground pyrolysis. This study investigated the impact of axial pressure on the pyrolysis of Xinjiang tar-rich coal using simulations. The variation of pore structure and volatiles was studied using low-field nuclear magnetic resonance and gas chromatography. Results indicated that pore structure and tar-gas composition evolved synergistically, and presented staged characteristics during pyrolysis under axial stress. 10.0–17.5 MPa, coals compressed to breakage, enhancing pore-fracture connectivity and convective heat transfer during pyrolysis. Pores continued to enlarge, porosity-permeability increased, promoting volatiles release and reducing secondary reactions, leading to increased tar-gas yield, particularly light and phenol oils, CO<sub>2</sub>, and C<sub>2+</sub> gases proportion. Conversely, coals compacted at 20.0–25.0 MPa, pore-fracture connectivity worsened due to fracture closure, decreased convective heat transfer, and weakened pore enlargement phenomenon. The enhancement of matrix heat transfer formed many smaller pyrolysis pores within the coal matrix, but poor connectivity decreased porosity-permeability. This increased the release resistance of volatiles, strengthened secondary reactions, and reduced tar-gas yields. However, the proportion of light and naphthalene oils, CH<sub>4</sub>, H<sub>2</sub>, and CO is increasing.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"267 ","pages":"Article 108175"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial pressure impact on pyrolysis behavior of Xinjiang coal: An inspiration for in-situ pyrolysis of tar-rich coal\",\"authors\":\"Bingyang Kou , Qingmin Shi , Shuangming Wang , Qiang Sun , Shidong Cui , Xiaolong Yang , Xinyue Zhao , Junwei Qiao\",\"doi\":\"10.1016/j.fuproc.2024.108175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tar-rich coal in-situ pyrolysis (TCIP) is a green and low-carbon technology that extracts tar and gas from underground tar-rich coal seams. Overburden pressures are a crucial factor for TCIP that differs from conventional ground pyrolysis. This study investigated the impact of axial pressure on the pyrolysis of Xinjiang tar-rich coal using simulations. The variation of pore structure and volatiles was studied using low-field nuclear magnetic resonance and gas chromatography. Results indicated that pore structure and tar-gas composition evolved synergistically, and presented staged characteristics during pyrolysis under axial stress. 10.0–17.5 MPa, coals compressed to breakage, enhancing pore-fracture connectivity and convective heat transfer during pyrolysis. Pores continued to enlarge, porosity-permeability increased, promoting volatiles release and reducing secondary reactions, leading to increased tar-gas yield, particularly light and phenol oils, CO<sub>2</sub>, and C<sub>2+</sub> gases proportion. Conversely, coals compacted at 20.0–25.0 MPa, pore-fracture connectivity worsened due to fracture closure, decreased convective heat transfer, and weakened pore enlargement phenomenon. The enhancement of matrix heat transfer formed many smaller pyrolysis pores within the coal matrix, but poor connectivity decreased porosity-permeability. This increased the release resistance of volatiles, strengthened secondary reactions, and reduced tar-gas yields. However, the proportion of light and naphthalene oils, CH<sub>4</sub>, H<sub>2</sub>, and CO is increasing.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"267 \",\"pages\":\"Article 108175\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024001450\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Axial pressure impact on pyrolysis behavior of Xinjiang coal: An inspiration for in-situ pyrolysis of tar-rich coal
Tar-rich coal in-situ pyrolysis (TCIP) is a green and low-carbon technology that extracts tar and gas from underground tar-rich coal seams. Overburden pressures are a crucial factor for TCIP that differs from conventional ground pyrolysis. This study investigated the impact of axial pressure on the pyrolysis of Xinjiang tar-rich coal using simulations. The variation of pore structure and volatiles was studied using low-field nuclear magnetic resonance and gas chromatography. Results indicated that pore structure and tar-gas composition evolved synergistically, and presented staged characteristics during pyrolysis under axial stress. 10.0–17.5 MPa, coals compressed to breakage, enhancing pore-fracture connectivity and convective heat transfer during pyrolysis. Pores continued to enlarge, porosity-permeability increased, promoting volatiles release and reducing secondary reactions, leading to increased tar-gas yield, particularly light and phenol oils, CO2, and C2+ gases proportion. Conversely, coals compacted at 20.0–25.0 MPa, pore-fracture connectivity worsened due to fracture closure, decreased convective heat transfer, and weakened pore enlargement phenomenon. The enhancement of matrix heat transfer formed many smaller pyrolysis pores within the coal matrix, but poor connectivity decreased porosity-permeability. This increased the release resistance of volatiles, strengthened secondary reactions, and reduced tar-gas yields. However, the proportion of light and naphthalene oils, CH4, H2, and CO is increasing.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.