具有3D力检测的自供电柔性电子皮肤触觉传感器

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jize Liu , Wei Zhao , Zhichao Ma , Hongwei Zhao , Luquan Ren
{"title":"具有3D力检测的自供电柔性电子皮肤触觉传感器","authors":"Jize Liu ,&nbsp;Wei Zhao ,&nbsp;Zhichao Ma ,&nbsp;Hongwei Zhao ,&nbsp;Luquan Ren","doi":"10.1016/j.mattod.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible and biocompatible self-driven sensors capable of multimodal perception are pivotal for the rapid development of wearable electronic devices. Currently, few studies have integrated the sensing of both frictional force and vertical pressure into a single, self-driven flexible sensor. Herein, we developed an acrylate (AA)-polyglutamic acid (PGA) hydrogel material that exhibits mechanical properties similar to those of skin. By integrating a triboelectric nanogenerator (TENG) into the AA-PGA hydrogel matrix, we constructed a dual-mode flexible sensor capable of utilizing biomechanical energy for multidirectional force sensing. This sensor features high sensitivity, high linearity, fast response, and excellent stability. A prototype was proposed for a robotic hand e-skin monitoring and analysis system to demonstrate the performance of the AA-PGA hydrogel sensor. As a self-driven sensor, the AA-PGA hydrogel sensor can perform real-time monitoring of physiological signals, such as wrist pulse detection and voice recognition. Moreover, it was continuously showcased in a series of personalized monitoring scenarios, including handwriting, step counting, and respiratory monitoring, further substantiating its outstanding sensing capabilities. Given these advantages, the developed AA-PGA hydrogel sensor holds great promise for applications in wearable sensors, physiological monitoring, and human–machine interfaces.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"81 ","pages":"Pages 84-94"},"PeriodicalIF":21.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered flexible electronic skin tactile sensor with 3D force detection\",\"authors\":\"Jize Liu ,&nbsp;Wei Zhao ,&nbsp;Zhichao Ma ,&nbsp;Hongwei Zhao ,&nbsp;Luquan Ren\",\"doi\":\"10.1016/j.mattod.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flexible and biocompatible self-driven sensors capable of multimodal perception are pivotal for the rapid development of wearable electronic devices. Currently, few studies have integrated the sensing of both frictional force and vertical pressure into a single, self-driven flexible sensor. Herein, we developed an acrylate (AA)-polyglutamic acid (PGA) hydrogel material that exhibits mechanical properties similar to those of skin. By integrating a triboelectric nanogenerator (TENG) into the AA-PGA hydrogel matrix, we constructed a dual-mode flexible sensor capable of utilizing biomechanical energy for multidirectional force sensing. This sensor features high sensitivity, high linearity, fast response, and excellent stability. A prototype was proposed for a robotic hand e-skin monitoring and analysis system to demonstrate the performance of the AA-PGA hydrogel sensor. As a self-driven sensor, the AA-PGA hydrogel sensor can perform real-time monitoring of physiological signals, such as wrist pulse detection and voice recognition. Moreover, it was continuously showcased in a series of personalized monitoring scenarios, including handwriting, step counting, and respiratory monitoring, further substantiating its outstanding sensing capabilities. Given these advantages, the developed AA-PGA hydrogel sensor holds great promise for applications in wearable sensors, physiological monitoring, and human–machine interfaces.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"81 \",\"pages\":\"Pages 84-94\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124002359\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002359","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有多模态感知能力的柔性和生物相容性自驱动传感器是可穿戴电子设备快速发展的关键。目前,很少有研究将摩擦力和垂直压力的传感集成到一个单一的、自驱动的柔性传感器中。在此,我们开发了一种丙烯酸酯(AA)-聚谷氨酸(PGA)水凝胶材料,其机械性能与皮肤相似。通过将摩擦电纳米发电机(TENG)集成到AA-PGA水凝胶基质中,我们构建了一个能够利用生物机械能进行多向力传感的双模柔性传感器。该传感器具有灵敏度高、线性度高、响应快、稳定性好等特点。为验证AA-PGA水凝胶传感器的性能,提出了一种机器人手部电子皮肤监测与分析系统的原型。AA-PGA水凝胶传感器是一种自驱动传感器,可以对腕部脉搏检测、语音识别等生理信号进行实时监测。此外,它还在手写、步数、呼吸监测等一系列个性化监测场景中不断展示,进一步证明了其出色的传感能力。鉴于这些优点,所开发的AA-PGA水凝胶传感器在可穿戴传感器、生理监测和人机界面方面的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-powered flexible electronic skin tactile sensor with 3D force detection

Self-powered flexible electronic skin tactile sensor with 3D force detection
Flexible and biocompatible self-driven sensors capable of multimodal perception are pivotal for the rapid development of wearable electronic devices. Currently, few studies have integrated the sensing of both frictional force and vertical pressure into a single, self-driven flexible sensor. Herein, we developed an acrylate (AA)-polyglutamic acid (PGA) hydrogel material that exhibits mechanical properties similar to those of skin. By integrating a triboelectric nanogenerator (TENG) into the AA-PGA hydrogel matrix, we constructed a dual-mode flexible sensor capable of utilizing biomechanical energy for multidirectional force sensing. This sensor features high sensitivity, high linearity, fast response, and excellent stability. A prototype was proposed for a robotic hand e-skin monitoring and analysis system to demonstrate the performance of the AA-PGA hydrogel sensor. As a self-driven sensor, the AA-PGA hydrogel sensor can perform real-time monitoring of physiological signals, such as wrist pulse detection and voice recognition. Moreover, it was continuously showcased in a series of personalized monitoring scenarios, including handwriting, step counting, and respiratory monitoring, further substantiating its outstanding sensing capabilities. Given these advantages, the developed AA-PGA hydrogel sensor holds great promise for applications in wearable sensors, physiological monitoring, and human–machine interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信