径向环载荷作用下局部减厚球壳的屈曲能力

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Song Zhou , Zhongwei Zhao , Zhancai Lao , Hui Gao
{"title":"径向环载荷作用下局部减厚球壳的屈曲能力","authors":"Song Zhou ,&nbsp;Zhongwei Zhao ,&nbsp;Zhancai Lao ,&nbsp;Hui Gao","doi":"10.1016/j.ijpvp.2025.105441","DOIUrl":null,"url":null,"abstract":"<div><div>Hollow spheres have been widely used and recognized in aerospace, ocean engineering, and other fields. Radial ring load is common in practical engineering, such as the support ring of spherical tank and the spherical shell of welded hollow spherical joints (WHSJs). The influences of different corrosion positions, corrosion parameters, and geometric parameters on the buckling capacity of spherical shells under radial ring load are studied by the finite element (FE) model. A simplified method for calculating the buckling capacity of the WHSJs subjected to axial compression and the hemispherical shell with radial ring load is proposed. In addition, a formula of reduce factors about the position of the corrosion pit and corroded thickness is introduced for obtaining the buckling capacity. The results show that the proposed formula can be used to accurately predict the buckling bearing capacity, which lays the foundation of the theoretical analysis for the shells with local thickness reduction under radial ring load.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"214 ","pages":"Article 105441"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buckling capacity of spherical shells with local thickness reduction under radial ring load\",\"authors\":\"Song Zhou ,&nbsp;Zhongwei Zhao ,&nbsp;Zhancai Lao ,&nbsp;Hui Gao\",\"doi\":\"10.1016/j.ijpvp.2025.105441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hollow spheres have been widely used and recognized in aerospace, ocean engineering, and other fields. Radial ring load is common in practical engineering, such as the support ring of spherical tank and the spherical shell of welded hollow spherical joints (WHSJs). The influences of different corrosion positions, corrosion parameters, and geometric parameters on the buckling capacity of spherical shells under radial ring load are studied by the finite element (FE) model. A simplified method for calculating the buckling capacity of the WHSJs subjected to axial compression and the hemispherical shell with radial ring load is proposed. In addition, a formula of reduce factors about the position of the corrosion pit and corroded thickness is introduced for obtaining the buckling capacity. The results show that the proposed formula can be used to accurately predict the buckling bearing capacity, which lays the foundation of the theoretical analysis for the shells with local thickness reduction under radial ring load.</div></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"214 \",\"pages\":\"Article 105441\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016125000110\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016125000110","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

空心球体在航空航天、海洋工程等领域得到了广泛的应用和认可。径向环荷载在实际工程中较为常见,如球形储罐的支承环和焊接空心球形接头的球壳。采用有限元模型研究了不同腐蚀位置、腐蚀参数和几何参数对径向环载荷作用下球壳屈曲能力的影响。提出了一种计算轴向压缩和半球形壳径向环载荷作用下WHSJs屈曲能力的简化方法。此外,还引入了腐蚀坑位置和腐蚀厚度的折减因子公式,用于计算屈曲能力。结果表明,本文提出的计算公式能够准确地预测筒壳在径向环载荷作用下的屈曲承载力,为局部减厚筒壳在径向环载荷作用下的屈曲承载力理论分析奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buckling capacity of spherical shells with local thickness reduction under radial ring load
Hollow spheres have been widely used and recognized in aerospace, ocean engineering, and other fields. Radial ring load is common in practical engineering, such as the support ring of spherical tank and the spherical shell of welded hollow spherical joints (WHSJs). The influences of different corrosion positions, corrosion parameters, and geometric parameters on the buckling capacity of spherical shells under radial ring load are studied by the finite element (FE) model. A simplified method for calculating the buckling capacity of the WHSJs subjected to axial compression and the hemispherical shell with radial ring load is proposed. In addition, a formula of reduce factors about the position of the corrosion pit and corroded thickness is introduced for obtaining the buckling capacity. The results show that the proposed formula can be used to accurately predict the buckling bearing capacity, which lays the foundation of the theoretical analysis for the shells with local thickness reduction under radial ring load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信