统计科学的Dirichlet-Multinomial混合模型:映射范式的转变

IF 3.5 2区 管理学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Massimo Bilancia , Rade Dačević
{"title":"统计科学的Dirichlet-Multinomial混合模型:映射范式的转变","authors":"Massimo Bilancia ,&nbsp;Rade Dačević","doi":"10.1016/j.joi.2024.101633","DOIUrl":null,"url":null,"abstract":"<div><div>Using Bayesian natural language processing (NLP) methods and a scalable variational algorithm tailored for mixtures of discrete positive data, we analyzed a large corpus of 111,411 eprints submitted to the arXiv repository between 1994 and 2022 in the Statistics category (the primary classification for these eprints on arXiv). Our objective is to assess the impact of Machine Learning (ML) on the field of Statistics–specifically, to determine whether the introduction of ML has led to a fundamental paradigm shift, transforming traditional statistical problems or creating entirely new ones, or if this perceived revolution is primarily occurring outside the field of Statistics. Our findings suggest that the only significant paradigm shift for Statistics as a scientific discipline remains the Bayesian revolution that began in the early 1990s.</div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"19 1","pages":"Article 101633"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm\",\"authors\":\"Massimo Bilancia ,&nbsp;Rade Dačević\",\"doi\":\"10.1016/j.joi.2024.101633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using Bayesian natural language processing (NLP) methods and a scalable variational algorithm tailored for mixtures of discrete positive data, we analyzed a large corpus of 111,411 eprints submitted to the arXiv repository between 1994 and 2022 in the Statistics category (the primary classification for these eprints on arXiv). Our objective is to assess the impact of Machine Learning (ML) on the field of Statistics–specifically, to determine whether the introduction of ML has led to a fundamental paradigm shift, transforming traditional statistical problems or creating entirely new ones, or if this perceived revolution is primarily occurring outside the field of Statistics. Our findings suggest that the only significant paradigm shift for Statistics as a scientific discipline remains the Bayesian revolution that began in the early 1990s.</div></div>\",\"PeriodicalId\":48662,\"journal\":{\"name\":\"Journal of Informetrics\",\"volume\":\"19 1\",\"pages\":\"Article 101633\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informetrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751157724001457\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724001457","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

使用贝叶斯自然语言处理(NLP)方法和专为离散正数据混合而定制的可扩展变分算法,我们分析了1994年至2022年间提交给arXiv存储库的统计类(arXiv上这些电子打印的主要分类)的111,411个电子打印的大型语料库。我们的目标是评估机器学习(ML)对统计领域的影响——具体来说,确定ML的引入是否导致了根本性的范式转变,改变了传统的统计问题还是创造了全新的问题,或者这种被感知的革命是否主要发生在统计领域之外。我们的研究结果表明,统计学作为一门科学学科的唯一重大范式转变仍然是始于20世纪90年代初的贝叶斯革命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dirichlet-Multinomial mixture model of Statistical Science: Mapping the shift of a paradigm
Using Bayesian natural language processing (NLP) methods and a scalable variational algorithm tailored for mixtures of discrete positive data, we analyzed a large corpus of 111,411 eprints submitted to the arXiv repository between 1994 and 2022 in the Statistics category (the primary classification for these eprints on arXiv). Our objective is to assess the impact of Machine Learning (ML) on the field of Statistics–specifically, to determine whether the introduction of ML has led to a fundamental paradigm shift, transforming traditional statistical problems or creating entirely new ones, or if this perceived revolution is primarily occurring outside the field of Statistics. Our findings suggest that the only significant paradigm shift for Statistics as a scientific discipline remains the Bayesian revolution that began in the early 1990s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Informetrics
Journal of Informetrics Social Sciences-Library and Information Sciences
CiteScore
6.40
自引率
16.20%
发文量
95
期刊介绍: Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信