苗期亚麻转录组分析及对冷热胁迫的生理响应

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES
Qian Zhao , Shuyao Li , Fu Wang , Jianyu Lu , Guofei Tan , Ningning Wang , Fan Qi , Changjiang Zhang , Michael K. Deyholos , Zhenyuan Zang , Jun Zhang , Jian Zhang
{"title":"苗期亚麻转录组分析及对冷热胁迫的生理响应","authors":"Qian Zhao ,&nbsp;Shuyao Li ,&nbsp;Fu Wang ,&nbsp;Jianyu Lu ,&nbsp;Guofei Tan ,&nbsp;Ningning Wang ,&nbsp;Fan Qi ,&nbsp;Changjiang Zhang ,&nbsp;Michael K. Deyholos ,&nbsp;Zhenyuan Zang ,&nbsp;Jun Zhang ,&nbsp;Jian Zhang","doi":"10.1016/j.envexpbot.2024.106076","DOIUrl":null,"url":null,"abstract":"<div><div>Exposure to low temperatures renders flax seedlings vulnerable to oxidative damage, leading to delayed flowering, while high temperatures hinder seedling growth and negatively impact pollen viability. The seedling stage is particularly sensitive to environmental stressors, which can result in decreased flax yield and compromised seed oil quality. In this study, phenotypic assessments, along with physiological, biochemical, and transcriptomic analyses, were conducted on flax plants subjected to both high and low temperature stress, followed by 6 d recovery period. Results showed that the length and weight of seedlings and shoots were greatest in flax plants that had recovered from low temperature stress. After exposure to low temperature stress, flax seedlings exhibited the highest relative water content (RWC) and relative water loss (RWL) measuring 66.56 % and 93.34 %, respectively. The levels of Pro, SOD, CAT, POD, and nine phytohormones were significantly elevated compared to the control, whereas MDA levels were notably declined. A total of 43,471 genes were identified in the transcriptome data, Among these 32,319 exhibited significant differential expression. GO analysis highlighted enrichment in biological processes, cellular components, and molecular functions. KEGG analysis showed enrichment in plant hormone signal transduction and secondary metabolite biosynthesis. Moreover, differentially expressed genes associated with phytohormone synthesis and signal transduction were analyzed. The expression level of salicylic acid (SA) genes was significantly upregulated under high temperature stress, whereas jasmonic acid (JA) genes were significantly up-regulated under low temperature stress. These findings will elucidate the intricate regulatory mechanisms of osmoregulatory factors, antioxidant enzymes, and endogenous plant hormones in flax's response to high and low temperature stress, offering valuable insights for the selection and breeding of resistant flax varieties and the enhancement of genetic resources.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"229 ","pages":"Article 106076"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome analysis and physiological response to heat and cold stress in flax (Linum usitatissimum L) at the seedling stage\",\"authors\":\"Qian Zhao ,&nbsp;Shuyao Li ,&nbsp;Fu Wang ,&nbsp;Jianyu Lu ,&nbsp;Guofei Tan ,&nbsp;Ningning Wang ,&nbsp;Fan Qi ,&nbsp;Changjiang Zhang ,&nbsp;Michael K. Deyholos ,&nbsp;Zhenyuan Zang ,&nbsp;Jun Zhang ,&nbsp;Jian Zhang\",\"doi\":\"10.1016/j.envexpbot.2024.106076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exposure to low temperatures renders flax seedlings vulnerable to oxidative damage, leading to delayed flowering, while high temperatures hinder seedling growth and negatively impact pollen viability. The seedling stage is particularly sensitive to environmental stressors, which can result in decreased flax yield and compromised seed oil quality. In this study, phenotypic assessments, along with physiological, biochemical, and transcriptomic analyses, were conducted on flax plants subjected to both high and low temperature stress, followed by 6 d recovery period. Results showed that the length and weight of seedlings and shoots were greatest in flax plants that had recovered from low temperature stress. After exposure to low temperature stress, flax seedlings exhibited the highest relative water content (RWC) and relative water loss (RWL) measuring 66.56 % and 93.34 %, respectively. The levels of Pro, SOD, CAT, POD, and nine phytohormones were significantly elevated compared to the control, whereas MDA levels were notably declined. A total of 43,471 genes were identified in the transcriptome data, Among these 32,319 exhibited significant differential expression. GO analysis highlighted enrichment in biological processes, cellular components, and molecular functions. KEGG analysis showed enrichment in plant hormone signal transduction and secondary metabolite biosynthesis. Moreover, differentially expressed genes associated with phytohormone synthesis and signal transduction were analyzed. The expression level of salicylic acid (SA) genes was significantly upregulated under high temperature stress, whereas jasmonic acid (JA) genes were significantly up-regulated under low temperature stress. These findings will elucidate the intricate regulatory mechanisms of osmoregulatory factors, antioxidant enzymes, and endogenous plant hormones in flax's response to high and low temperature stress, offering valuable insights for the selection and breeding of resistant flax varieties and the enhancement of genetic resources.</div></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":\"229 \",\"pages\":\"Article 106076\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224004349\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224004349","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

低温使亚麻幼苗容易受到氧化损伤,导致开花延迟,而高温则阻碍幼苗生长并对花粉活力产生负面影响。苗期对环境胁迫因素特别敏感,这可能导致亚麻产量下降和籽油质量受损。在本研究中,对亚麻植株进行了表型评估、生理生化和转录组学分析,并在高温和低温胁迫下进行了6 d的恢复期。结果表明,低温胁迫恢复后的亚麻植株幼苗和枝条的长度和重量最大。低温胁迫后,亚麻幼苗的相对含水量(RWC)和相对失水(RWL)最高,分别为66.56 %和93.34 %。与对照相比,Pro、SOD、CAT、POD和9种植物激素水平显著升高,而MDA水平显著降低。在转录组数据中共鉴定出43471个基因,其中32319个基因表现出显著的差异表达。氧化石墨烯分析强调了生物过程、细胞成分和分子功能中的富集。KEGG分析显示植物激素信号转导和次生代谢物生物合成富集。此外,还分析了与植物激素合成和信号转导相关的差异表达基因。高温胁迫下水杨酸(SA)基因表达量显著上调,低温胁迫下茉莉酸(JA)基因表达量显著上调。这些发现将阐明渗透调节因子、抗氧化酶和内源植物激素在亚麻对高低温胁迫反应中的复杂调控机制,为亚麻抗病品种的选育和遗传资源的增强提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptome analysis and physiological response to heat and cold stress in flax (Linum usitatissimum L) at the seedling stage
Exposure to low temperatures renders flax seedlings vulnerable to oxidative damage, leading to delayed flowering, while high temperatures hinder seedling growth and negatively impact pollen viability. The seedling stage is particularly sensitive to environmental stressors, which can result in decreased flax yield and compromised seed oil quality. In this study, phenotypic assessments, along with physiological, biochemical, and transcriptomic analyses, were conducted on flax plants subjected to both high and low temperature stress, followed by 6 d recovery period. Results showed that the length and weight of seedlings and shoots were greatest in flax plants that had recovered from low temperature stress. After exposure to low temperature stress, flax seedlings exhibited the highest relative water content (RWC) and relative water loss (RWL) measuring 66.56 % and 93.34 %, respectively. The levels of Pro, SOD, CAT, POD, and nine phytohormones were significantly elevated compared to the control, whereas MDA levels were notably declined. A total of 43,471 genes were identified in the transcriptome data, Among these 32,319 exhibited significant differential expression. GO analysis highlighted enrichment in biological processes, cellular components, and molecular functions. KEGG analysis showed enrichment in plant hormone signal transduction and secondary metabolite biosynthesis. Moreover, differentially expressed genes associated with phytohormone synthesis and signal transduction were analyzed. The expression level of salicylic acid (SA) genes was significantly upregulated under high temperature stress, whereas jasmonic acid (JA) genes were significantly up-regulated under low temperature stress. These findings will elucidate the intricate regulatory mechanisms of osmoregulatory factors, antioxidant enzymes, and endogenous plant hormones in flax's response to high and low temperature stress, offering valuable insights for the selection and breeding of resistant flax varieties and the enhancement of genetic resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信