应用机器学习分析描述大动脉转位手术后组织多普勒和斑点跟踪超声心动图的模式

IF 0.8 Q4 CARDIAC & CARDIOVASCULAR SYSTEMS
Covadonga Terol Espinosa de los Monteros , Roel L.F. van der Palen , Jef Van den Eynde , Lukas Rammeloo , Mark G. Hazekamp , Nico A. Blom , Irene M. Kuipers , Arend D.J. ten Harkel
{"title":"应用机器学习分析描述大动脉转位手术后组织多普勒和斑点跟踪超声心动图的模式","authors":"Covadonga Terol Espinosa de los Monteros ,&nbsp;Roel L.F. van der Palen ,&nbsp;Jef Van den Eynde ,&nbsp;Lukas Rammeloo ,&nbsp;Mark G. Hazekamp ,&nbsp;Nico A. Blom ,&nbsp;Irene M. Kuipers ,&nbsp;Arend D.J. ten Harkel","doi":"10.1016/j.ijcchd.2024.100560","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Advanced echocardiographic techniques such as Tissue Doppler imaging (TDI) and speckle tracking echocardiography (STE) can detect more subtle changes in ventricular performance. We aimed to study the ventricular performance in patients with transposition of the great arteries (TGA) at mid-term follow-up after the arterial switch operation (ASO) with advanced echocardiographic techniques. In addition, we sought to discover new clinical phenotypes using unsupervised machine learning.</div></div><div><h3>Methods</h3><div>Conventional, TDI and STE echocardiographic parameters were prospectively obtained from 124 TGA patients (66.1 % male, age 10.8 ± 5.1 years, 24.2 % with ventricular septal defect) in this observational study. The data was analyzed with conventional statistics and new machine learning techniques.</div></div><div><h3>Results</h3><div>TGA patients had reduced biventricular systolic (septal s’ Z-score −2.28 ± 1.26; RV s’ Z-score −2.16 ± 0.71; mean left ventricular longitudinal strain Z-score of the LV -2.49 ± 1.68) and RV diastolic performance (RV E/e’ Z-score 2.35 ± 1.70) mid-term after ASO. Unsupervised clustering within the TGA population revealed 3 clusters. Interestingly, cluster 3 defined a group of patients with older age at ASO, the most reduced ventricular performance as well as the highest rates of reoperations and interventions.</div></div><div><h3>Conclusions</h3><div>Assessment of ventricular performance with TDI and STE 10 years after ASO showed that TGA patients have decreased biventricular systolic and diastolic function, especially at the septal regions. Novel analytical methods such as unsupervised clustering may help identify new clinical phenotypes from multiple variables and may contribute to improved risk stratification.</div></div>","PeriodicalId":73429,"journal":{"name":"International journal of cardiology. Congenital heart disease","volume":"19 ","pages":"Article 100560"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning analysis to describe patterns in tissue Doppler and speckle tracking echocardiography in patients with transposition of the great arteries after arterial switch operation\",\"authors\":\"Covadonga Terol Espinosa de los Monteros ,&nbsp;Roel L.F. van der Palen ,&nbsp;Jef Van den Eynde ,&nbsp;Lukas Rammeloo ,&nbsp;Mark G. Hazekamp ,&nbsp;Nico A. Blom ,&nbsp;Irene M. Kuipers ,&nbsp;Arend D.J. ten Harkel\",\"doi\":\"10.1016/j.ijcchd.2024.100560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Advanced echocardiographic techniques such as Tissue Doppler imaging (TDI) and speckle tracking echocardiography (STE) can detect more subtle changes in ventricular performance. We aimed to study the ventricular performance in patients with transposition of the great arteries (TGA) at mid-term follow-up after the arterial switch operation (ASO) with advanced echocardiographic techniques. In addition, we sought to discover new clinical phenotypes using unsupervised machine learning.</div></div><div><h3>Methods</h3><div>Conventional, TDI and STE echocardiographic parameters were prospectively obtained from 124 TGA patients (66.1 % male, age 10.8 ± 5.1 years, 24.2 % with ventricular septal defect) in this observational study. The data was analyzed with conventional statistics and new machine learning techniques.</div></div><div><h3>Results</h3><div>TGA patients had reduced biventricular systolic (septal s’ Z-score −2.28 ± 1.26; RV s’ Z-score −2.16 ± 0.71; mean left ventricular longitudinal strain Z-score of the LV -2.49 ± 1.68) and RV diastolic performance (RV E/e’ Z-score 2.35 ± 1.70) mid-term after ASO. Unsupervised clustering within the TGA population revealed 3 clusters. Interestingly, cluster 3 defined a group of patients with older age at ASO, the most reduced ventricular performance as well as the highest rates of reoperations and interventions.</div></div><div><h3>Conclusions</h3><div>Assessment of ventricular performance with TDI and STE 10 years after ASO showed that TGA patients have decreased biventricular systolic and diastolic function, especially at the septal regions. Novel analytical methods such as unsupervised clustering may help identify new clinical phenotypes from multiple variables and may contribute to improved risk stratification.</div></div>\",\"PeriodicalId\":73429,\"journal\":{\"name\":\"International journal of cardiology. Congenital heart disease\",\"volume\":\"19 \",\"pages\":\"Article 100560\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of cardiology. Congenital heart disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666668524000697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of cardiology. Congenital heart disease","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666668524000697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

先进的超声心动图技术,如组织多普勒成像(TDI)和斑点跟踪超声心动图(STE)可以检测到心室功能更细微的变化。我们的目的是利用先进的超声心动图技术研究大动脉转位(TGA)患者在动脉转换手术(ASO)后中期随访时的心室功能。此外,我们试图使用无监督机器学习来发现新的临床表型。方法对124例TGA患者(男性66.1%,年龄10.8±5.1岁,室间隔缺损24.2%)的常规、TDI和STE超声心动图参数进行前瞻性分析。使用传统统计学和新的机器学习技术对数据进行分析。结果stga患者双室收缩(间隔)Z-score(- 2.28±1.26)降低;RV s ' Z-score−2.16±0.71;ASO中期平均左室纵向应变Z-score(-2.49±1.68)和左室舒张性能(RV E/ E ' Z-score 2.35±1.70)。TGA人口中的无监督聚类显示出3个聚类。有趣的是,第3组定义了一组年龄较大的ASO患者,心室功能下降最多,再手术和干预率最高。结论在ASO术后10年用TDI和STE评估心室功能显示TGA患者双心室收缩和舒张功能下降,特别是在间隔区。新的分析方法,如无监督聚类可能有助于从多个变量中识别新的临床表型,并可能有助于改善风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using machine learning analysis to describe patterns in tissue Doppler and speckle tracking echocardiography in patients with transposition of the great arteries after arterial switch operation

Background

Advanced echocardiographic techniques such as Tissue Doppler imaging (TDI) and speckle tracking echocardiography (STE) can detect more subtle changes in ventricular performance. We aimed to study the ventricular performance in patients with transposition of the great arteries (TGA) at mid-term follow-up after the arterial switch operation (ASO) with advanced echocardiographic techniques. In addition, we sought to discover new clinical phenotypes using unsupervised machine learning.

Methods

Conventional, TDI and STE echocardiographic parameters were prospectively obtained from 124 TGA patients (66.1 % male, age 10.8 ± 5.1 years, 24.2 % with ventricular septal defect) in this observational study. The data was analyzed with conventional statistics and new machine learning techniques.

Results

TGA patients had reduced biventricular systolic (septal s’ Z-score −2.28 ± 1.26; RV s’ Z-score −2.16 ± 0.71; mean left ventricular longitudinal strain Z-score of the LV -2.49 ± 1.68) and RV diastolic performance (RV E/e’ Z-score 2.35 ± 1.70) mid-term after ASO. Unsupervised clustering within the TGA population revealed 3 clusters. Interestingly, cluster 3 defined a group of patients with older age at ASO, the most reduced ventricular performance as well as the highest rates of reoperations and interventions.

Conclusions

Assessment of ventricular performance with TDI and STE 10 years after ASO showed that TGA patients have decreased biventricular systolic and diastolic function, especially at the septal regions. Novel analytical methods such as unsupervised clustering may help identify new clinical phenotypes from multiple variables and may contribute to improved risk stratification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of cardiology. Congenital heart disease
International journal of cardiology. Congenital heart disease Cardiology and Cardiovascular Medicine
自引率
0.00%
发文量
0
审稿时长
83 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信