相对内质复合体

IF 0.7 2区 数学 Q2 MATHEMATICS
Sam K. Miller
{"title":"相对内质复合体","authors":"Sam K. Miller","doi":"10.1016/j.jpaa.2025.107867","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and <em>k</em> be a field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>. In prior work, we studied endotrivial complexes, the invertible objects of the bounded homotopy category of <em>p</em>-permutation <em>kG</em>-modules <span><math><msup><mrow><mi>K</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mmultiscripts><mrow><mi>triv</mi></mrow><mprescripts></mprescripts><mrow><mi>k</mi><mi>G</mi></mrow><none></none></mmultiscripts><mo>)</mo></math></span>. Using the notion of projectivity relative to a <em>kG</em>-module, we expand on this study by defining notions of “relatively” endotrivial chain complexes, analogous to Lassueur's construction of relatively endotrivial <em>kG</em>-modules. We obtain equivalent characterizations of relative endotriviality and find corresponding local homological data which almost completely determine the isomorphism class of a relatively endotrivial complex. We show this local data must partially satisfy the Borel-Smith conditions, and consider the behavior of restriction to subgroups containing Sylow <em>p</em>-subgroups <em>S</em> of <em>G</em>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107867"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relatively endotrivial complexes\",\"authors\":\"Sam K. Miller\",\"doi\":\"10.1016/j.jpaa.2025.107867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite group and <em>k</em> be a field of characteristic <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>. In prior work, we studied endotrivial complexes, the invertible objects of the bounded homotopy category of <em>p</em>-permutation <em>kG</em>-modules <span><math><msup><mrow><mi>K</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>(</mo><mmultiscripts><mrow><mi>triv</mi></mrow><mprescripts></mprescripts><mrow><mi>k</mi><mi>G</mi></mrow><none></none></mmultiscripts><mo>)</mo></math></span>. Using the notion of projectivity relative to a <em>kG</em>-module, we expand on this study by defining notions of “relatively” endotrivial chain complexes, analogous to Lassueur's construction of relatively endotrivial <em>kG</em>-modules. We obtain equivalent characterizations of relative endotriviality and find corresponding local homological data which almost completely determine the isomorphism class of a relatively endotrivial complex. We show this local data must partially satisfy the Borel-Smith conditions, and consider the behavior of restriction to subgroups containing Sylow <em>p</em>-subgroups <em>S</em> of <em>G</em>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107867\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000064\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有限群,k是一个特征为p>;0的域。在前人的工作中,我们研究了p-置换kg -模Kb(trivkG)的有界同伦范畴的可逆对象内平凡配合物。利用相对于kg -模的投射性的概念,我们通过定义“相对”内平凡链配合物的概念来扩展这项研究,类似于Lassueur的相对内平凡的kg -模的构造。我们得到了相对内琐碎的等价刻画,并找到了相应的局部同构数据,这些数据几乎完全确定了一个相对内琐碎复合体的同构类。我们证明了该局部数据必须部分满足Borel-Smith条件,并考虑了包含Sylow p-子群S (G)的子群的约束行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relatively endotrivial complexes
Let G be a finite group and k be a field of characteristic p>0. In prior work, we studied endotrivial complexes, the invertible objects of the bounded homotopy category of p-permutation kG-modules Kb(trivkG). Using the notion of projectivity relative to a kG-module, we expand on this study by defining notions of “relatively” endotrivial chain complexes, analogous to Lassueur's construction of relatively endotrivial kG-modules. We obtain equivalent characterizations of relative endotriviality and find corresponding local homological data which almost completely determine the isomorphism class of a relatively endotrivial complex. We show this local data must partially satisfy the Borel-Smith conditions, and consider the behavior of restriction to subgroups containing Sylow p-subgroups S of G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信