自由Jordan超代数J(D1|D2)的z2阶维数

IF 0.7 2区 数学 Q2 MATHEMATICS
Shikui Shang
{"title":"自由Jordan超代数J(D1|D2)的z2阶维数","authors":"Shikui Shang","doi":"10.1016/j.jpaa.2025.107879","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a field of characteristic 0. For a superspace <span><math><mi>V</mi><mo>=</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>⊕</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> over <em>k</em>, we call the vector <span><math><mo>(</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>,</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></math></span> the (<span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-)graded dimension of <em>V</em>. Let <span><math><mi>J</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the free Jordan superalgebra generated by <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> even generators and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> odd generators. In this paper, we study the graded dimensions of the <em>n</em>-components of <span><math><mi>J</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and find the connection between them and the homology of Tits-Allison-Gao Lie superalgebra of <span><math><mi>J</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> following the method given by I. Kashuba and O. Mathieu in <span><span>[15]</span></span>, where they deal with the free Jordan algebra. And, four related conjectures on the free Jordan superalgebras and related Lie superalgebras are proposed in this article.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107879"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Z2-graded dimensions of the free Jordan superalgebra J(D1|D2)\",\"authors\":\"Shikui Shang\",\"doi\":\"10.1016/j.jpaa.2025.107879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be a field of characteristic 0. For a superspace <span><math><mi>V</mi><mo>=</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>⊕</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> over <em>k</em>, we call the vector <span><math><mo>(</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>0</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>,</mo><msub><mrow><mi>dim</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⁡</mo><msub><mrow><mi>V</mi></mrow><mrow><mover><mrow><mn>1</mn></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>)</mo></math></span> the (<span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-)graded dimension of <em>V</em>. Let <span><math><mi>J</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the free Jordan superalgebra generated by <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> even generators and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> odd generators. In this paper, we study the graded dimensions of the <em>n</em>-components of <span><math><mi>J</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and find the connection between them and the homology of Tits-Allison-Gao Lie superalgebra of <span><math><mi>J</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> following the method given by I. Kashuba and O. Mathieu in <span><span>[15]</span></span>, where they deal with the free Jordan algebra. And, four related conjectures on the free Jordan superalgebras and related Lie superalgebras are proposed in this article.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107879\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000180\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000180","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k是特征为0的场。对于一个超空间V=V0¯⊕V1¯/ k,我们称向量(dimk∈V0¯,dimk∈V1¯)为V的(Z2-)次维数,设J(D1|D2)为由D1偶生成子和D2奇生成子生成的自由约当超代数。本文根据I. Kashuba和O. Mathieu在[15]中处理自由Jordan代数的方法,研究了J(D1|D2)的n个分量的梯度维数,并找到了它们与J(D1|D2)的Tits-Allison-Gao Lie超代数同调的联系。并对自由Jordan超代数和相关Lie超代数提出了四个相关的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Z2-graded dimensions of the free Jordan superalgebra J(D1|D2)
Let k be a field of characteristic 0. For a superspace V=V0¯V1¯ over k, we call the vector (dimkV0¯,dimkV1¯) the (Z2-)graded dimension of V. Let J(D1|D2) be the free Jordan superalgebra generated by D1 even generators and D2 odd generators. In this paper, we study the graded dimensions of the n-components of J(D1|D2) and find the connection between them and the homology of Tits-Allison-Gao Lie superalgebra of J(D1|D2) following the method given by I. Kashuba and O. Mathieu in [15], where they deal with the free Jordan algebra. And, four related conjectures on the free Jordan superalgebras and related Lie superalgebras are proposed in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信