持久化模块的平面外壳和注入壳

IF 0.7 2区 数学 Q2 MATHEMATICS
Eero Hyry, Ville Puuska
{"title":"持久化模块的平面外壳和注入壳","authors":"Eero Hyry,&nbsp;Ville Puuska","doi":"10.1016/j.jpaa.2025.107874","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by recent progress in topological data analysis, we establish a Matlis duality between injective hulls and flat covers of persistence modules. This extends to a duality between minimal flat and minimal injective resolutions. We utilize the theory of flat cotorsion modules and flat covers developed by Enochs and Xu. By means of this theory we can work with persistence modules which are not tame or even pointwise finite-dimensional.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107874"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat covers and injective hulls of persistence modules\",\"authors\":\"Eero Hyry,&nbsp;Ville Puuska\",\"doi\":\"10.1016/j.jpaa.2025.107874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by recent progress in topological data analysis, we establish a Matlis duality between injective hulls and flat covers of persistence modules. This extends to a duality between minimal flat and minimal injective resolutions. We utilize the theory of flat cotorsion modules and flat covers developed by Enochs and Xu. By means of this theory we can work with persistence modules which are not tame or even pointwise finite-dimensional.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107874\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000131\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于拓扑数据分析的最新进展,我们建立了持久化模块的注入壳和平面盖之间的Matlis对偶关系。这扩展到最小平面分辨率和最小内射分辨率之间的对偶性。我们利用了Enochs和Xu提出的平扭模和平盖理论。通过这个理论,我们可以处理非驯服的、甚至是点向有限维的持久性模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flat covers and injective hulls of persistence modules
Motivated by recent progress in topological data analysis, we establish a Matlis duality between injective hulls and flat covers of persistence modules. This extends to a duality between minimal flat and minimal injective resolutions. We utilize the theory of flat cotorsion modules and flat covers developed by Enochs and Xu. By means of this theory we can work with persistence modules which are not tame or even pointwise finite-dimensional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信