关于素幂次的金字塔群

IF 0.7 2区 数学 Q2 MATHEMATICS
Xiaofang Gao , Martino Garonzi
{"title":"关于素幂次的金字塔群","authors":"Xiaofang Gao ,&nbsp;Martino Garonzi","doi":"10.1016/j.jpaa.2025.107868","DOIUrl":null,"url":null,"abstract":"<div><div>A Kirkman Triple System Γ is called <em>m</em>-pyramidal if there exists a subgroup <em>G</em> of the automorphism group of Γ that fixes <em>m</em> points and acts regularly on the other points. Such group <em>G</em> admits a unique conjugacy class <em>C</em> of involutions (elements of order 2) and <span><math><mo>|</mo><mi>C</mi><mo>|</mo><mo>=</mo><mi>m</mi></math></span>. We call groups with this property <em>m</em>-pyramidal. We prove that, if <em>m</em> is an odd prime power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, with <span><math><mi>p</mi><mo>≠</mo><mn>7</mn></math></span>, then every <em>m</em>-pyramidal group is solvable if and only if either <span><math><mi>m</mi><mo>=</mo><mn>9</mn></math></span> or <em>k</em> is odd. The primitive permutation groups play an important role in the proof. We also determine the orders of the <em>m</em>-pyramidal groups when <em>m</em> is a prime number.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107868"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pyramidal groups of prime power degree\",\"authors\":\"Xiaofang Gao ,&nbsp;Martino Garonzi\",\"doi\":\"10.1016/j.jpaa.2025.107868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Kirkman Triple System Γ is called <em>m</em>-pyramidal if there exists a subgroup <em>G</em> of the automorphism group of Γ that fixes <em>m</em> points and acts regularly on the other points. Such group <em>G</em> admits a unique conjugacy class <em>C</em> of involutions (elements of order 2) and <span><math><mo>|</mo><mi>C</mi><mo>|</mo><mo>=</mo><mi>m</mi></math></span>. We call groups with this property <em>m</em>-pyramidal. We prove that, if <em>m</em> is an odd prime power <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, with <span><math><mi>p</mi><mo>≠</mo><mn>7</mn></math></span>, then every <em>m</em>-pyramidal group is solvable if and only if either <span><math><mi>m</mi><mo>=</mo><mn>9</mn></math></span> or <em>k</em> is odd. The primitive permutation groups play an important role in the proof. We also determine the orders of the <em>m</em>-pyramidal groups when <em>m</em> is a prime number.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107868\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000076\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000076","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果在Γ的自同构群中有一个子群G固定m个点并规律作用于其他点,则称柯克曼三重系统Γ为m-金字塔。这样的群G承认一个唯一的共轭类C的对合(2阶元)和|C|=m。我们称具有这种性质的群为m-金字塔。我们证明了,如果m是奇数素数幂pk,且p≠7,则当且仅当m=9或k为奇数时,每一个m金字塔群都是可解的。原始置换群在证明中起着重要的作用。当m为素数时,我们还确定了m-金字塔群的阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pyramidal groups of prime power degree
A Kirkman Triple System Γ is called m-pyramidal if there exists a subgroup G of the automorphism group of Γ that fixes m points and acts regularly on the other points. Such group G admits a unique conjugacy class C of involutions (elements of order 2) and |C|=m. We call groups with this property m-pyramidal. We prove that, if m is an odd prime power pk, with p7, then every m-pyramidal group is solvable if and only if either m=9 or k is odd. The primitive permutation groups play an important role in the proof. We also determine the orders of the m-pyramidal groups when m is a prime number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信