具有超自同构代数的余维增长

IF 0.7 2区 数学 Q2 MATHEMATICS
Antonio Ioppolo , Daniela La Mattina
{"title":"具有超自同构代数的余维增长","authors":"Antonio Ioppolo ,&nbsp;Daniela La Mattina","doi":"10.1016/j.jpaa.2025.107871","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>A</em> be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of <em>φ</em>-codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>φ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span>. More precisely, we shall prove that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mroot><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>φ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of <em>A</em>. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107871"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codimension growth of algebras with superautomorphism\",\"authors\":\"Antonio Ioppolo ,&nbsp;Daniela La Mattina\",\"doi\":\"10.1016/j.jpaa.2025.107871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>A</em> be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of <em>φ</em>-codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>φ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span>. More precisely, we shall prove that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mroot><mrow><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>φ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mroot></math></span> always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of <em>A</em>. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107871\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000106\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000106","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A是在特征为0的域上具有超自同构的有限维代数。本文研究了φ-余维序列cnφ(A), n=1,2,....的渐近性更确切地说,我们将证明limn→∞(cnφ(A)n总是存在的,并且它是一个与A的合适的半简单子代数的维数显式相关的整数。这个结果给出了在这种情况下Amitsur的一个猜想的正答案。在论文的最后部分,我们刻画了指数增长以2为界的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codimension growth of algebras with superautomorphism
Let A be a finite dimensional algebra endowed with a superautomorphism over a field of characteristic zero. In this paper we study the asymptotic behavior of the sequence of φ-codimensions cnφ(A), n=1,2,. More precisely, we shall prove that limncnφ(A)n always exists and it is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of A. This result gives a positive answer to a conjecture of Amitsur in this setting. In the final part of the paper we characterize the algebras whose exponential growth is bounded by 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信