Ti3C2Tx MXene在电化学储能系统中的应用与展望

IF 1.3 4区 化学 Q4 ELECTROCHEMISTRY
Ying Jiang
{"title":"Ti3C2Tx MXene在电化学储能系统中的应用与展望","authors":"Ying Jiang","doi":"10.1016/j.ijoes.2025.100948","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid evolution of electrochemical energy storage systems demands advanced materials that combine high electrical conductivity, controlled surface chemistry, and structural stability. This review examines the recent developments in Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene synthesis, structural properties, and applications in energy storage devices. We analyze various preparation methods, including traditional HF etching, safer fluoride-free alternatives, and emerging green synthesis routes, highlighting their impact on material quality and scalability. The review explores the critical role of surface termination groups and interlayer spacing in determining electrochemical performance, with particular emphasis on the material's exceptional electrical conductivity (up to 20,000 S/cm) and tunable work function (1.6–6.25 eV). Detailed examination of composite formation techniques and interface engineering reveals significant improvements in device performance across multiple applications, including lithium-ion batteries achieving specific capacities of 3500 mAh/g with Si composite, lithium-sulfur batteries demonstrating strong polysulfide binding energies (&gt;1.4 eV), and supercapacitors exhibiting volumetric capacitances exceeding 1000 F/cm³ . Recent breakthroughs in electrode design and material optimization have led to enhanced stability with some composite maintaining 90 % capacity retention over 2000 cycles and demonstrating rate capabilities up to 100 C in various energy storage applications. The integration of novel fabrication approaches and strategic material combinations continues to expand the potential applications of this versatile material in next-generation energy storage technologies.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 2","pages":"Article 100948"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications and perspectives of Ti3C2Tx MXene in electrochemical energy storage systems\",\"authors\":\"Ying Jiang\",\"doi\":\"10.1016/j.ijoes.2025.100948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid evolution of electrochemical energy storage systems demands advanced materials that combine high electrical conductivity, controlled surface chemistry, and structural stability. This review examines the recent developments in Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene synthesis, structural properties, and applications in energy storage devices. We analyze various preparation methods, including traditional HF etching, safer fluoride-free alternatives, and emerging green synthesis routes, highlighting their impact on material quality and scalability. The review explores the critical role of surface termination groups and interlayer spacing in determining electrochemical performance, with particular emphasis on the material's exceptional electrical conductivity (up to 20,000 S/cm) and tunable work function (1.6–6.25 eV). Detailed examination of composite formation techniques and interface engineering reveals significant improvements in device performance across multiple applications, including lithium-ion batteries achieving specific capacities of 3500 mAh/g with Si composite, lithium-sulfur batteries demonstrating strong polysulfide binding energies (&gt;1.4 eV), and supercapacitors exhibiting volumetric capacitances exceeding 1000 F/cm³ . Recent breakthroughs in electrode design and material optimization have led to enhanced stability with some composite maintaining 90 % capacity retention over 2000 cycles and demonstrating rate capabilities up to 100 C in various energy storage applications. The integration of novel fabrication approaches and strategic material combinations continues to expand the potential applications of this versatile material in next-generation energy storage technologies.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"20 2\",\"pages\":\"Article 100948\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398125000239\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125000239","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

电化学储能系统的快速发展需要结合高导电性、可控表面化学和结构稳定性的先进材料。本文综述了Ti3C2Tx MXene的合成、结构性质及其在储能器件中的应用。我们分析了各种制备方法,包括传统的HF蚀刻,更安全的无氟替代品,以及新兴的绿色合成路线,强调了它们对材料质量和可扩展性的影响。这篇综述探讨了表面终止基团和层间间距在决定电化学性能方面的关键作用,特别强调了材料卓越的导电性(高达20,000 S/cm)和可调的功函数(1.6-6.25 eV)。对复合材料形成技术和界面工程的详细研究表明,在多种应用中,器件性能得到了显著改善,包括使用硅复合材料的锂离子电池的比容量达到3500 mAh/g,锂硫电池的多硫化物结合能很强(>1.4 eV),超级电容器的体积容量超过1000 F/cm³ 。最近在电极设计和材料优化方面的突破提高了稳定性,一些复合材料在2000次循环中保持了90 %的容量保持,并在各种储能应用中展示了高达100 C的速率能力。新型制造方法和战略性材料组合的集成将继续扩大这种多功能材料在下一代储能技术中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications and perspectives of Ti3C2Tx MXene in electrochemical energy storage systems
The rapid evolution of electrochemical energy storage systems demands advanced materials that combine high electrical conductivity, controlled surface chemistry, and structural stability. This review examines the recent developments in Ti3C2Tx MXene synthesis, structural properties, and applications in energy storage devices. We analyze various preparation methods, including traditional HF etching, safer fluoride-free alternatives, and emerging green synthesis routes, highlighting their impact on material quality and scalability. The review explores the critical role of surface termination groups and interlayer spacing in determining electrochemical performance, with particular emphasis on the material's exceptional electrical conductivity (up to 20,000 S/cm) and tunable work function (1.6–6.25 eV). Detailed examination of composite formation techniques and interface engineering reveals significant improvements in device performance across multiple applications, including lithium-ion batteries achieving specific capacities of 3500 mAh/g with Si composite, lithium-sulfur batteries demonstrating strong polysulfide binding energies (>1.4 eV), and supercapacitors exhibiting volumetric capacitances exceeding 1000 F/cm³ . Recent breakthroughs in electrode design and material optimization have led to enhanced stability with some composite maintaining 90 % capacity retention over 2000 cycles and demonstrating rate capabilities up to 100 C in various energy storage applications. The integration of novel fabrication approaches and strategic material combinations continues to expand the potential applications of this versatile material in next-generation energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信