采用FIR DAC提高ADC线性度的89 db SNDR 50 khz BW CT ZOOM ADC

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shida Song, Yuhua Liang
{"title":"采用FIR DAC提高ADC线性度的89 db SNDR 50 khz BW CT ZOOM ADC","authors":"Shida Song,&nbsp;Yuhua Liang","doi":"10.1016/j.mejo.2024.106526","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a CT Zoom ADC using a single-bit quantized first-order Sigma-Delta ADC as the coarse quantization ADC. The coarse quantization output is converted to be a multi-level output through a FIR filter, enhancing the ADC linearity and suppressing the sensitivity to clock jitter. Thus, not only can the designing difficulty be relieved, the power efficiency can be also improved. The fine-grained ADC adopts a third-order Sigma Delta ADC with single-bit quantization. The final output of the ZOOM ADC is the weighted average sum of the two-stage outputs.</div><div>In a 0.18 μm CMOS process, the circuit has achieved good performance. Within a bandwidth of 50 kHz, it achieves 89.3 dB SNDR, 14.5bits ENOB. The ADC core consumes 380 μW at a 1.8-V supply, resulting in a SNDR-based FoM of 170.5 dB. The size of the core ADC is 380μm × 520 μm.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"156 ","pages":"Article 106526"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An 89-dB SNDR 50-kHz BW CT ZOOM ADC employing FIR DAC to enhance the ADC linearity\",\"authors\":\"Shida Song,&nbsp;Yuhua Liang\",\"doi\":\"10.1016/j.mejo.2024.106526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a CT Zoom ADC using a single-bit quantized first-order Sigma-Delta ADC as the coarse quantization ADC. The coarse quantization output is converted to be a multi-level output through a FIR filter, enhancing the ADC linearity and suppressing the sensitivity to clock jitter. Thus, not only can the designing difficulty be relieved, the power efficiency can be also improved. The fine-grained ADC adopts a third-order Sigma Delta ADC with single-bit quantization. The final output of the ZOOM ADC is the weighted average sum of the two-stage outputs.</div><div>In a 0.18 μm CMOS process, the circuit has achieved good performance. Within a bandwidth of 50 kHz, it achieves 89.3 dB SNDR, 14.5bits ENOB. The ADC core consumes 380 μW at a 1.8-V supply, resulting in a SNDR-based FoM of 170.5 dB. The size of the core ADC is 380μm × 520 μm.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"156 \",\"pages\":\"Article 106526\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239124002303\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124002303","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种CT变焦ADC,采用单比特量化一阶Sigma-Delta ADC作为粗量化ADC。通过FIR滤波器将粗量化输出转换为多级输出,增强ADC线性度并抑制对时钟抖动的灵敏度。这样不仅可以减轻设计难度,还可以提高电源效率。细粒度ADC采用单比特量化的三阶Sigma Delta ADC。ZOOM ADC的最终输出是两级输出的加权平均和。在0.18 μm CMOS工艺下,电路取得了良好的性能。在50 kHz带宽内,实现89.3 dB SNDR, 14.5bits ENOB。在1.8 v电源下,ADC核心功耗为380 μW,基于sndr的FoM为170.5 dB。核心ADC尺寸为380μm × 520 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An 89-dB SNDR 50-kHz BW CT ZOOM ADC employing FIR DAC to enhance the ADC linearity
This paper presents a CT Zoom ADC using a single-bit quantized first-order Sigma-Delta ADC as the coarse quantization ADC. The coarse quantization output is converted to be a multi-level output through a FIR filter, enhancing the ADC linearity and suppressing the sensitivity to clock jitter. Thus, not only can the designing difficulty be relieved, the power efficiency can be also improved. The fine-grained ADC adopts a third-order Sigma Delta ADC with single-bit quantization. The final output of the ZOOM ADC is the weighted average sum of the two-stage outputs.
In a 0.18 μm CMOS process, the circuit has achieved good performance. Within a bandwidth of 50 kHz, it achieves 89.3 dB SNDR, 14.5bits ENOB. The ADC core consumes 380 μW at a 1.8-V supply, resulting in a SNDR-based FoM of 170.5 dB. The size of the core ADC is 380μm × 520 μm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信