{"title":"几乎最小次曲面上曲线的属界","authors":"Wanseok Lee , Euisung Park","doi":"10.1016/j.jpaa.2025.107891","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>C</mi><mo>⊂</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, be a nondegenerate projective integral curve of degree <em>d</em> and arithmetic genus <em>g</em>. Castelnuovo theory says that<ul><li><span>(<em>i</em>)</span><span><div>if <span><math><mi>g</mi><mo>></mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of minimal degree, and</div></span></li><li><span>(<em>ii</em>)</span><span><div>if <span><math><mi>g</mi><mo>></mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of degree ≤<em>r</em>.</div></span></li></ul> In this paper, we prove that if <span><math><mi>g</mi><mo>></mo><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of minimal degree or a del Pezzo surface. To this aim, we show that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> is the upper bound of <em>g</em> when <span><math><mi>C</mi></math></span> lies on a surface of degree <em>r</em> which is not a del Pezzo surface. We also provide a specific construction of curves with genus equal to the upper bound <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107891"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genus bound of curves on surfaces of almost minimal degree\",\"authors\":\"Wanseok Lee , Euisung Park\",\"doi\":\"10.1016/j.jpaa.2025.107891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>C</mi><mo>⊂</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>, be a nondegenerate projective integral curve of degree <em>d</em> and arithmetic genus <em>g</em>. Castelnuovo theory says that<ul><li><span>(<em>i</em>)</span><span><div>if <span><math><mi>g</mi><mo>></mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of minimal degree, and</div></span></li><li><span>(<em>ii</em>)</span><span><div>if <span><math><mi>g</mi><mo>></mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of degree ≤<em>r</em>.</div></span></li></ul> In this paper, we prove that if <span><math><mi>g</mi><mo>></mo><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> then <span><math><mi>C</mi></math></span> is contained in a surface of minimal degree or a del Pezzo surface. To this aim, we show that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span> is the upper bound of <em>g</em> when <span><math><mi>C</mi></math></span> lies on a surface of degree <em>r</em> which is not a del Pezzo surface. We also provide a specific construction of curves with genus equal to the upper bound <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>d</mi><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107891\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000301\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000301","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Genus bound of curves on surfaces of almost minimal degree
Let , , be a nondegenerate projective integral curve of degree d and arithmetic genus g. Castelnuovo theory says that
(i)
if then is contained in a surface of minimal degree, and
(ii)
if then is contained in a surface of degree ≤r.
In this paper, we prove that if then is contained in a surface of minimal degree or a del Pezzo surface. To this aim, we show that is the upper bound of g when lies on a surface of degree r which is not a del Pezzo surface. We also provide a specific construction of curves with genus equal to the upper bound .
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.