Bloch-Ogus定理,周群的循环同调和变形

IF 0.7 2区 数学 Q2 MATHEMATICS
Sen Yang
{"title":"Bloch-Ogus定理,周群的循环同调和变形","authors":"Sen Yang","doi":"10.1016/j.jpaa.2025.107895","DOIUrl":null,"url":null,"abstract":"<div><div>Using Bloch-Ogus theorem and Chern character from K-theory to cyclic homology, we answer a question of Green and Griffiths on extending Bloch formula. Moreover, we construct a map from the local Hilbert functor to local cohomology groups. With suitable assumptions, we use this map to answer a question of Bloch on constructing a natural transformation from the local Hilbert functor to cohomological Chow groups.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107895"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bloch-Ogus theorem, cyclic homology and deformations of Chow groups\",\"authors\":\"Sen Yang\",\"doi\":\"10.1016/j.jpaa.2025.107895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using Bloch-Ogus theorem and Chern character from K-theory to cyclic homology, we answer a question of Green and Griffiths on extending Bloch formula. Moreover, we construct a map from the local Hilbert functor to local cohomology groups. With suitable assumptions, we use this map to answer a question of Bloch on constructing a natural transformation from the local Hilbert functor to cohomological Chow groups.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107895\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000349\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用k -论到循环同调的Bloch- ogus定理和Chern性质,回答了Green和Griffiths关于Bloch公式推广的一个问题。此外,构造了局部Hilbert函子到局部上同群的映射。在适当的假设下,我们用这个映射回答了Bloch关于构造从局部Hilbert函子到上同调Chow群的自然变换的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bloch-Ogus theorem, cyclic homology and deformations of Chow groups
Using Bloch-Ogus theorem and Chern character from K-theory to cyclic homology, we answer a question of Green and Griffiths on extending Bloch formula. Moreover, we construct a map from the local Hilbert functor to local cohomology groups. With suitable assumptions, we use this map to answer a question of Bloch on constructing a natural transformation from the local Hilbert functor to cohomological Chow groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信