Functorial聚合

IF 0.7 2区 数学 Q2 MATHEMATICS
David I. Spivak , Richard Garner , Aaron David Fairbanks
{"title":"Functorial聚合","authors":"David I. Spivak ,&nbsp;Richard Garner ,&nbsp;Aaron David Fairbanks","doi":"10.1016/j.jpaa.2025.107883","DOIUrl":null,"url":null,"abstract":"<div><div>We study polynomial comonads and polynomial bicomodules. Polynomial comonads amount to categories. Polynomial bicomodules between categories amount to parametric right adjoint functors between corresponding copresheaf categories. These may themselves be understood as generalized polynomial functors. They are also called data migration functors because of applications in categorical database theory. We investigate several universal constructions in the framed bicategory of categories, retrofunctors, and parametric right adjoints. We then use the theory we develop to model database aggregation alongside querying, all within this rich ecosystem.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107883"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functorial aggregation\",\"authors\":\"David I. Spivak ,&nbsp;Richard Garner ,&nbsp;Aaron David Fairbanks\",\"doi\":\"10.1016/j.jpaa.2025.107883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study polynomial comonads and polynomial bicomodules. Polynomial comonads amount to categories. Polynomial bicomodules between categories amount to parametric right adjoint functors between corresponding copresheaf categories. These may themselves be understood as generalized polynomial functors. They are also called data migration functors because of applications in categorical database theory. We investigate several universal constructions in the framed bicategory of categories, retrofunctors, and parametric right adjoints. We then use the theory we develop to model database aggregation alongside querying, all within this rich ecosystem.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107883\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000222\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000222","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了多项式公和多项式双模。多项式公项相当于类别。范畴间的多项式双模相当于对应的同组范畴间的参数右伴随函子。这些函数本身可以理解为广义多项式函子。由于在分类数据库理论中的应用,它们也被称为数据迁移函子。我们研究了范畴、逆函子和参数右伴随的框架双范畴中的几个普遍结构。然后,我们使用我们开发的理论来模拟数据库聚合和查询,所有这些都在这个丰富的生态系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functorial aggregation
We study polynomial comonads and polynomial bicomodules. Polynomial comonads amount to categories. Polynomial bicomodules between categories amount to parametric right adjoint functors between corresponding copresheaf categories. These may themselves be understood as generalized polynomial functors. They are also called data migration functors because of applications in categorical database theory. We investigate several universal constructions in the framed bicategory of categories, retrofunctors, and parametric right adjoints. We then use the theory we develop to model database aggregation alongside querying, all within this rich ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信