Manohar Kumar , Ramakrishna Nanduri , Kamalesh Saha
{"title":"v函数的斜率和Waldschmidt常数","authors":"Manohar Kumar , Ramakrishna Nanduri , Kamalesh Saha","doi":"10.1016/j.jpaa.2025.107881","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the asymptotic behavior of the v-number of a Noetherian graded filtration <span><math><mi>I</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of a Noetherian <span><math><mi>N</mi></math></span>-graded domain <em>R</em>. Recently, it was shown that <span><math><mi>v</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></math></span> is periodically linear in <em>k</em> for <span><math><mi>k</mi><mo>≫</mo><mn>0</mn></math></span>. We show that all these linear functions have the same slope, i.e. <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>v</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span> exists, which is equal to <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>α</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>, where <span><math><mi>α</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> denotes the minimum degree of a non-zero element in <em>I</em>. In particular, for any Noetherian symbolic filtration <span><math><mi>I</mi><mo>=</mo><msub><mrow><mo>{</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of <em>R</em>, it follows that <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac><mo>=</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>I</mi><mo>)</mo></math></span>, the Waldschmidt constant of <em>I</em>. Next, for a non-equigenerated square-free monomial ideal <em>I</em>, we prove that <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>≫</mo><mn>0</mn></math></span>. Also, for an ideal <em>I</em> having the symbolic strong persistence property, we give a linear upper bound on <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span>. As an application, we derive some criteria for a square-free monomial ideal <em>I</em> to satisfy <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, and provide several examples in support. In addition, for any simple graph <em>G</em>, we establish that <span><math><mi>v</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>v</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>α</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> if and only if <em>G</em> is a Cohen-Macaulay very-well covered graph, where <span><math><mi>J</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cover ideal of <em>G</em>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107881"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The slope of the v-function and the Waldschmidt constant\",\"authors\":\"Manohar Kumar , Ramakrishna Nanduri , Kamalesh Saha\",\"doi\":\"10.1016/j.jpaa.2025.107881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the asymptotic behavior of the v-number of a Noetherian graded filtration <span><math><mi>I</mi><mo>=</mo><msub><mrow><mo>{</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of a Noetherian <span><math><mi>N</mi></math></span>-graded domain <em>R</em>. Recently, it was shown that <span><math><mi>v</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></math></span> is periodically linear in <em>k</em> for <span><math><mi>k</mi><mo>≫</mo><mn>0</mn></math></span>. We show that all these linear functions have the same slope, i.e. <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>v</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span> exists, which is equal to <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>α</mi><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>, where <span><math><mi>α</mi><mo>(</mo><mi>I</mi><mo>)</mo></math></span> denotes the minimum degree of a non-zero element in <em>I</em>. In particular, for any Noetherian symbolic filtration <span><math><mi>I</mi><mo>=</mo><msub><mrow><mo>{</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>}</mo></mrow><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> of <em>R</em>, it follows that <span><math><munder><mi>lim</mi><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac><mo>=</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>I</mi><mo>)</mo></math></span>, the Waldschmidt constant of <em>I</em>. Next, for a non-equigenerated square-free monomial ideal <em>I</em>, we prove that <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>≫</mo><mn>0</mn></math></span>. Also, for an ideal <em>I</em> having the symbolic strong persistence property, we give a linear upper bound on <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span>. As an application, we derive some criteria for a square-free monomial ideal <em>I</em> to satisfy <span><math><mi>v</mi><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, and provide several examples in support. In addition, for any simple graph <em>G</em>, we establish that <span><math><mi>v</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>≤</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>v</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>reg</mi><mo>(</mo><mi>R</mi><mo>/</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>α</mi><mo>(</mo><mi>J</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> if and only if <em>G</em> is a Cohen-Macaulay very-well covered graph, where <span><math><mi>J</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the cover ideal of <em>G</em>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107881\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000209\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000209","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了noetheran n -梯度域r中noetheran梯度滤波I={I[k]}k≥0的v数的渐近性,最近证明了当k < 0时,v(I[k])在k上是周期线性的。我们证明了所有这些线性函数都具有相同的斜率,即limk→∞(v(I[k]))k存在,即limk→∞(v(I[k]))k,其中α(I)表示I中非零元素的最小阶数。特别地,对于R的任何Noetherian符号滤波I={I(k)}k≥0,则可以得到limk→∞(v(I(k))k=α I(I)),即I的Waldschmidt常数。其次,对于非等生成无平方单项式理想I,我们证明了k < 0时v(I(k))≤reg(R/I(k))。同样,对于具有符号强持久性的理想I,我们给出了v(I(k))的线性上界。作为应用,我们导出了对于所有k≥1的无平方单项理想I满足v(I(k))≤reg(R/I(k))的若干准则,并给出了若干支持的例子。此外,对于任意简单图G,我们建立了对于所有k≥1,v(J(G)(k))≤reg(R/J(G)(k)),并且当且仅当G是Cohen-Macaulay非常好覆盖图,其中J(G)是G的覆盖理想,v(J(G)(k))=reg(R/J(G)(k))=α(J(G)(k))−1对于所有k≥1。
The slope of the v-function and the Waldschmidt constant
In this paper, we study the asymptotic behavior of the v-number of a Noetherian graded filtration of a Noetherian -graded domain R. Recently, it was shown that is periodically linear in k for . We show that all these linear functions have the same slope, i.e. exists, which is equal to , where denotes the minimum degree of a non-zero element in I. In particular, for any Noetherian symbolic filtration of R, it follows that , the Waldschmidt constant of I. Next, for a non-equigenerated square-free monomial ideal I, we prove that for . Also, for an ideal I having the symbolic strong persistence property, we give a linear upper bound on . As an application, we derive some criteria for a square-free monomial ideal I to satisfy for all , and provide several examples in support. In addition, for any simple graph G, we establish that for all , and for all if and only if G is a Cohen-Macaulay very-well covered graph, where is the cover ideal of G.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.