具有弱Lefschetz性质的三次代数

IF 0.7 2区 数学 Q2 MATHEMATICS
Andrew R. Kustin
{"title":"具有弱Lefschetz性质的三次代数","authors":"Andrew R. Kustin","doi":"10.1016/j.jpaa.2025.107878","DOIUrl":null,"url":null,"abstract":"<div><div>Let <strong><em>k</em></strong> be an arbitrary field and Φ be the Macaulay inverse system for a standard graded Artinian Gorenstein <strong><em>k</em></strong>-algebra <em>A</em> of arbitrary embedding dimension <em>d</em> and socle degree three. Assume that <em>A</em> has the weak Lefschetz property. We identify generators for the defining ideal of <em>A</em> as a quotient of a polynomial ring <em>P</em> over <strong><em>k</em></strong> with <em>d</em> variables and we give an explicit homogeneous resolution, <span><math><mi>X</mi></math></span>, of <em>A</em> by free <em>P</em>-modules. We identify a symmetric bilinear form <em>G</em> which determines how to turn <span><math><mi>X</mi></math></span> into the minimal resolution of <em>A</em>. In particular, when <em>G</em> is identically zero, then <span><math><mi>X</mi></math></span> is already the minimal resolution of <em>A</em>.</div><div>The resolution <span><math><mi>X</mi></math></span> is closely related to the resolution of a Gorenstein algebra with socle degree two. A Gorenstein algebra with socle degree two has a resolution that is as linear as possible.</div><div>The corresponding project has previously been carried out (by the present author, and also by Macias Marques, Veliche, and Weyman), when the embedding dimension <em>d</em> is equal to 4.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107878"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artinian Gorenstein algebras of socle degree three which have the weak Lefschetz property\",\"authors\":\"Andrew R. Kustin\",\"doi\":\"10.1016/j.jpaa.2025.107878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <strong><em>k</em></strong> be an arbitrary field and Φ be the Macaulay inverse system for a standard graded Artinian Gorenstein <strong><em>k</em></strong>-algebra <em>A</em> of arbitrary embedding dimension <em>d</em> and socle degree three. Assume that <em>A</em> has the weak Lefschetz property. We identify generators for the defining ideal of <em>A</em> as a quotient of a polynomial ring <em>P</em> over <strong><em>k</em></strong> with <em>d</em> variables and we give an explicit homogeneous resolution, <span><math><mi>X</mi></math></span>, of <em>A</em> by free <em>P</em>-modules. We identify a symmetric bilinear form <em>G</em> which determines how to turn <span><math><mi>X</mi></math></span> into the minimal resolution of <em>A</em>. In particular, when <em>G</em> is identically zero, then <span><math><mi>X</mi></math></span> is already the minimal resolution of <em>A</em>.</div><div>The resolution <span><math><mi>X</mi></math></span> is closely related to the resolution of a Gorenstein algebra with socle degree two. A Gorenstein algebra with socle degree two has a resolution that is as linear as possible.</div><div>The corresponding project has previously been carried out (by the present author, and also by Macias Marques, Veliche, and Weyman), when the embedding dimension <em>d</em> is equal to 4.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 2\",\"pages\":\"Article 107878\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000179\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000179","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k为任意域,Φ为任意嵌入维数d、阶数为3的标准分级Artinian Gorenstein k-代数a的Macaulay逆系统。假设A具有弱Lefschetz性质。我们将A的理想定义为一个P / k有d个变量的多项式环的商,并通过自由P模给出A的显式齐次解析,X。我们确定了一个对称双线性形式G,它决定了如何将X转化为a的最小分辨率。特别是,当G等于零时,则X已经是a的最小分辨率。二阶格伦斯坦代数的分辨率尽可能是线性的。当嵌入维数d等于4时,之前已经进行了相应的项目(由本作者,以及Macias Marques, Veliche和Weyman)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artinian Gorenstein algebras of socle degree three which have the weak Lefschetz property
Let k be an arbitrary field and Φ be the Macaulay inverse system for a standard graded Artinian Gorenstein k-algebra A of arbitrary embedding dimension d and socle degree three. Assume that A has the weak Lefschetz property. We identify generators for the defining ideal of A as a quotient of a polynomial ring P over k with d variables and we give an explicit homogeneous resolution, X, of A by free P-modules. We identify a symmetric bilinear form G which determines how to turn X into the minimal resolution of A. In particular, when G is identically zero, then X is already the minimal resolution of A.
The resolution X is closely related to the resolution of a Gorenstein algebra with socle degree two. A Gorenstein algebra with socle degree two has a resolution that is as linear as possible.
The corresponding project has previously been carried out (by the present author, and also by Macias Marques, Veliche, and Weyman), when the embedding dimension d is equal to 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信