迈向精神健康研究中的协作数据科学:ECNP神经成像网络可访问数据存储库

Adyasha Khuntia , Madalina-Octavia Buciuman , John Fanning , Aleks Stolicyn , Clara Vetter , Reetta-Liina Armio , Tiina From , Federica Goffi , Lisa Hahn , Tobias Kaufmann , Heikki Laurikainen , Eleonora Maggioni , Ignacio Martinez-Zalacain , Anne Ruef , Mark Sen Dong , Emanuel Schwarz , Letizia Squarcina , Ole Andreassen , Marcella Bellani , Paolo Brambilla , Nikolaos Koutsouleris
{"title":"迈向精神健康研究中的协作数据科学:ECNP神经成像网络可访问数据存储库","authors":"Adyasha Khuntia ,&nbsp;Madalina-Octavia Buciuman ,&nbsp;John Fanning ,&nbsp;Aleks Stolicyn ,&nbsp;Clara Vetter ,&nbsp;Reetta-Liina Armio ,&nbsp;Tiina From ,&nbsp;Federica Goffi ,&nbsp;Lisa Hahn ,&nbsp;Tobias Kaufmann ,&nbsp;Heikki Laurikainen ,&nbsp;Eleonora Maggioni ,&nbsp;Ignacio Martinez-Zalacain ,&nbsp;Anne Ruef ,&nbsp;Mark Sen Dong ,&nbsp;Emanuel Schwarz ,&nbsp;Letizia Squarcina ,&nbsp;Ole Andreassen ,&nbsp;Marcella Bellani ,&nbsp;Paolo Brambilla ,&nbsp;Nikolaos Koutsouleris","doi":"10.1016/j.nsa.2024.105407","DOIUrl":null,"url":null,"abstract":"<div><div>The current biologically uninformed psychiatric taxonomy complicates optimal diagnosis and treatment. Neuroimaging-based machine learning methods hold promise for tackling these issues, but large-scale, representative cohorts are required for building robust and generalizable models. The European College of Neuropsychopharmacology Neuroimaging Network Accessible Data Repository (ECNP-NNADR) addresses this need by collating multi-site, multi-modal, multi-diagnosis datasets that enable collaborative research. The newly established ECNP-NNADR includes 4829 participants across 21 cohorts and 11 distinct psychiatric diagnoses, available via the Virtual Pooling and Analysis of Research data (ViPAR) software. The repository includes demographic and clinical information, including diagnosis and questionnaires evaluating psychiatric symptomatology, as well as multi-atlas grey matter volume regions of interest (ROI). To illustrate the opportunities offered by the repository, two proof-of-concept analyses were performed: (1) multivariate classification of 498 patients with schizophrenia (SZ) and 498 matched healthy control (HC) individuals, and (2) normative age prediction using 1170 HC individuals with subsequent application of this model to study abnormal brain maturational processes in patients with SZ. In the SZ classification task, we observed varying balanced accuracies, reaching a maximum of 71.13% across sites and atlases. The normative-age model demonstrated a mean absolute error (MAE) of 6.95 years [coefficient of determination (<em>R</em><sup><em>2</em></sup>) = 0.77, <em>P</em> &lt; .001] across sites and atlases. The model demonstrated robust generalization on a separate HC left-out sample achieving a MAE of 7.16 years [<em>R</em><sup><em>2</em></sup> = 0.74,<em>P</em> &lt; .001]. When applied to the SZ group, the model exhibited a MAE of 7.79 years [<em>R</em><sup><em>2</em></sup> = 0.79, <em>P</em> &lt; .001], with patients displaying accelerated brain-aging with a brain age gap (BrainAGE) of 4.49 (8.90) years. Conclusively, this novel multi-site, multi-modal, transdiagnostic data repository offers unique opportunities for systematically tackling existing challenges around the generalizability and validity of imaging-based machine learning applications for psychiatry.</div></div>","PeriodicalId":100952,"journal":{"name":"Neuroscience Applied","volume":"4 ","pages":"Article 105407"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards collaborative data science in mental health research: The ECNP neuroimaging network accessible data repository\",\"authors\":\"Adyasha Khuntia ,&nbsp;Madalina-Octavia Buciuman ,&nbsp;John Fanning ,&nbsp;Aleks Stolicyn ,&nbsp;Clara Vetter ,&nbsp;Reetta-Liina Armio ,&nbsp;Tiina From ,&nbsp;Federica Goffi ,&nbsp;Lisa Hahn ,&nbsp;Tobias Kaufmann ,&nbsp;Heikki Laurikainen ,&nbsp;Eleonora Maggioni ,&nbsp;Ignacio Martinez-Zalacain ,&nbsp;Anne Ruef ,&nbsp;Mark Sen Dong ,&nbsp;Emanuel Schwarz ,&nbsp;Letizia Squarcina ,&nbsp;Ole Andreassen ,&nbsp;Marcella Bellani ,&nbsp;Paolo Brambilla ,&nbsp;Nikolaos Koutsouleris\",\"doi\":\"10.1016/j.nsa.2024.105407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current biologically uninformed psychiatric taxonomy complicates optimal diagnosis and treatment. Neuroimaging-based machine learning methods hold promise for tackling these issues, but large-scale, representative cohorts are required for building robust and generalizable models. The European College of Neuropsychopharmacology Neuroimaging Network Accessible Data Repository (ECNP-NNADR) addresses this need by collating multi-site, multi-modal, multi-diagnosis datasets that enable collaborative research. The newly established ECNP-NNADR includes 4829 participants across 21 cohorts and 11 distinct psychiatric diagnoses, available via the Virtual Pooling and Analysis of Research data (ViPAR) software. The repository includes demographic and clinical information, including diagnosis and questionnaires evaluating psychiatric symptomatology, as well as multi-atlas grey matter volume regions of interest (ROI). To illustrate the opportunities offered by the repository, two proof-of-concept analyses were performed: (1) multivariate classification of 498 patients with schizophrenia (SZ) and 498 matched healthy control (HC) individuals, and (2) normative age prediction using 1170 HC individuals with subsequent application of this model to study abnormal brain maturational processes in patients with SZ. In the SZ classification task, we observed varying balanced accuracies, reaching a maximum of 71.13% across sites and atlases. The normative-age model demonstrated a mean absolute error (MAE) of 6.95 years [coefficient of determination (<em>R</em><sup><em>2</em></sup>) = 0.77, <em>P</em> &lt; .001] across sites and atlases. The model demonstrated robust generalization on a separate HC left-out sample achieving a MAE of 7.16 years [<em>R</em><sup><em>2</em></sup> = 0.74,<em>P</em> &lt; .001]. When applied to the SZ group, the model exhibited a MAE of 7.79 years [<em>R</em><sup><em>2</em></sup> = 0.79, <em>P</em> &lt; .001], with patients displaying accelerated brain-aging with a brain age gap (BrainAGE) of 4.49 (8.90) years. Conclusively, this novel multi-site, multi-modal, transdiagnostic data repository offers unique opportunities for systematically tackling existing challenges around the generalizability and validity of imaging-based machine learning applications for psychiatry.</div></div>\",\"PeriodicalId\":100952,\"journal\":{\"name\":\"Neuroscience Applied\",\"volume\":\"4 \",\"pages\":\"Article 105407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Applied\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772408524014728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Applied","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772408524014728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前生物学上不了解的精神病学分类使最佳诊断和治疗复杂化。基于神经成像的机器学习方法有望解决这些问题,但需要大规模的、有代表性的队列来构建健壮的、可推广的模型。欧洲神经精神药理学学院神经成像网络可访问数据存储库(ECNP-NNADR)通过整理多站点、多模式、多诊断数据集来满足这一需求,从而实现协作研究。新建立的ECNP-NNADR包括21个队列的4829名参与者和11种不同的精神病诊断,可通过虚拟池和研究数据分析(ViPAR)软件获得。该存储库包括人口统计和临床信息,包括诊断和评估精神症状的问卷,以及多图谱感兴趣的灰质体积区域(ROI)。为了说明该知识库提供的机会,进行了两项概念验证分析:(1)对498名精神分裂症患者(SZ)和498名匹配的健康对照(HC)个体进行多变量分类,(2)对1170名HC个体进行规范年龄预测,并随后应用该模型研究SZ患者的异常大脑成熟过程。在SZ分类任务中,我们观察到不同的平衡精度,不同站点和地图集的最高精度达到71.13%。规范年龄模型的平均绝对误差(MAE)为6.95岁[决定系数(R2) = 0.77, P <;.001]跨站点和地图集。该模型在单独的HC遗漏样本上表现出稳健的泛化,MAE为7.16年[R2 = 0.74,P <;措施)。当应用于SZ组时,模型的MAE为7.79年[R2 = 0.79, P <;.001],患者表现出脑老化加速,脑年龄差距(BrainAGE)为4.49(8.90)岁。最后,这种新颖的多站点、多模式、跨诊断数据存储库为系统地解决围绕基于成像的机器学习应用于精神病学的普遍性和有效性的现有挑战提供了独特的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards collaborative data science in mental health research: The ECNP neuroimaging network accessible data repository
The current biologically uninformed psychiatric taxonomy complicates optimal diagnosis and treatment. Neuroimaging-based machine learning methods hold promise for tackling these issues, but large-scale, representative cohorts are required for building robust and generalizable models. The European College of Neuropsychopharmacology Neuroimaging Network Accessible Data Repository (ECNP-NNADR) addresses this need by collating multi-site, multi-modal, multi-diagnosis datasets that enable collaborative research. The newly established ECNP-NNADR includes 4829 participants across 21 cohorts and 11 distinct psychiatric diagnoses, available via the Virtual Pooling and Analysis of Research data (ViPAR) software. The repository includes demographic and clinical information, including diagnosis and questionnaires evaluating psychiatric symptomatology, as well as multi-atlas grey matter volume regions of interest (ROI). To illustrate the opportunities offered by the repository, two proof-of-concept analyses were performed: (1) multivariate classification of 498 patients with schizophrenia (SZ) and 498 matched healthy control (HC) individuals, and (2) normative age prediction using 1170 HC individuals with subsequent application of this model to study abnormal brain maturational processes in patients with SZ. In the SZ classification task, we observed varying balanced accuracies, reaching a maximum of 71.13% across sites and atlases. The normative-age model demonstrated a mean absolute error (MAE) of 6.95 years [coefficient of determination (R2) = 0.77, P < .001] across sites and atlases. The model demonstrated robust generalization on a separate HC left-out sample achieving a MAE of 7.16 years [R2 = 0.74,P < .001]. When applied to the SZ group, the model exhibited a MAE of 7.79 years [R2 = 0.79, P < .001], with patients displaying accelerated brain-aging with a brain age gap (BrainAGE) of 4.49 (8.90) years. Conclusively, this novel multi-site, multi-modal, transdiagnostic data repository offers unique opportunities for systematically tackling existing challenges around the generalizability and validity of imaging-based machine learning applications for psychiatry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信