使用方差统计的假设矩阵的选择

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Paavo Sattler , Manuel Rosenbaum
{"title":"使用方差统计的假设矩阵的选择","authors":"Paavo Sattler ,&nbsp;Manuel Rosenbaum","doi":"10.1016/j.spl.2025.110356","DOIUrl":null,"url":null,"abstract":"<div><div>Initially developed in <span><span>Brunner et al. (1997)</span></span>, the Anova-type-statistic (ATS) is one of the most used quadratic forms for testing multivariate hypotheses for a variety of different parameter vectors <span><math><mrow><mi>θ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. Tests based on a version of the ATS are usually preferable over those based on other quadratic forms, like the Wald-type-statistic. However, the same null hypothesis <span><math><mrow><mi>H</mi><mi>θ</mi><mo>=</mo><mi>y</mi></mrow></math></span> can be expressed by various hypothesis matrices <span><math><mrow><mi>H</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mo>×</mo><mi>d</mi></mrow></msup></mrow></math></span> and corresponding vectors <span><math><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span>, yielding different values of the test statistic. Since this can entail differing test decisions, we investigate under which conditions certain tests using different hypothesis matrices coincide. In this manuscript, we show that for several versions of the Anova-type-statistic, for each hypothesis <span><math><mrow><mi>H</mi><mi>θ</mi><mo>=</mo><mi>y</mi></mrow></math></span> a companion matrix with a minimal number of rows can be constructed, testing the same hypothesis but also always yielding the same test decisions. This can substantially reduce computation time, as demonstrated in several conducted simulations.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"219 ","pages":"Article 110356"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice of the hypothesis matrix for using the Anova-type-statistic\",\"authors\":\"Paavo Sattler ,&nbsp;Manuel Rosenbaum\",\"doi\":\"10.1016/j.spl.2025.110356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Initially developed in <span><span>Brunner et al. (1997)</span></span>, the Anova-type-statistic (ATS) is one of the most used quadratic forms for testing multivariate hypotheses for a variety of different parameter vectors <span><math><mrow><mi>θ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. Tests based on a version of the ATS are usually preferable over those based on other quadratic forms, like the Wald-type-statistic. However, the same null hypothesis <span><math><mrow><mi>H</mi><mi>θ</mi><mo>=</mo><mi>y</mi></mrow></math></span> can be expressed by various hypothesis matrices <span><math><mrow><mi>H</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi><mo>×</mo><mi>d</mi></mrow></msup></mrow></math></span> and corresponding vectors <span><math><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span>, yielding different values of the test statistic. Since this can entail differing test decisions, we investigate under which conditions certain tests using different hypothesis matrices coincide. In this manuscript, we show that for several versions of the Anova-type-statistic, for each hypothesis <span><math><mrow><mi>H</mi><mi>θ</mi><mo>=</mo><mi>y</mi></mrow></math></span> a companion matrix with a minimal number of rows can be constructed, testing the same hypothesis but also always yielding the same test decisions. This can substantially reduce computation time, as demonstrated in several conducted simulations.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"219 \",\"pages\":\"Article 110356\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225000021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225000021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

Anova-type-statistic (ATS)最初由Brunner et al.(1997)提出,是用于检验各种不同参数向量θ∈Rd的多元假设的最常用的二次型之一。基于ATS的测试通常比基于其他二次型(如wald型统计)的测试更可取。但是,同一个原假设Hθ=y可以用不同的假设矩阵H∈Rm×d和相应的向量y∈Rm表示,从而得到不同的检验统计量值。由于这可能需要不同的测试决策,我们研究在哪些条件下使用不同假设矩阵的某些测试重合。在本文中,我们证明了对于anova类型统计的几个版本,对于每个假设Hθ=y,可以构造具有最小行数的伴侣矩阵,测试相同的假设,但也总是产生相同的测试决策。这可以大大减少计算时间,正如几个模拟所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice of the hypothesis matrix for using the Anova-type-statistic
Initially developed in Brunner et al. (1997), the Anova-type-statistic (ATS) is one of the most used quadratic forms for testing multivariate hypotheses for a variety of different parameter vectors θRd. Tests based on a version of the ATS are usually preferable over those based on other quadratic forms, like the Wald-type-statistic. However, the same null hypothesis Hθ=y can be expressed by various hypothesis matrices HRm×d and corresponding vectors yRm, yielding different values of the test statistic. Since this can entail differing test decisions, we investigate under which conditions certain tests using different hypothesis matrices coincide. In this manuscript, we show that for several versions of the Anova-type-statistic, for each hypothesis Hθ=y a companion matrix with a minimal number of rows can be constructed, testing the same hypothesis but also always yielding the same test decisions. This can substantially reduce computation time, as demonstrated in several conducted simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信