细胞外基质调节干细胞命运的生化和生物物理线索:细胞外基质模拟生物材料的进展与展望

Anuska Mishra , Unnati Modi , Rahul Sharma , Dhiraj Bhatia , Raghu Solanki
{"title":"细胞外基质调节干细胞命运的生化和生物物理线索:细胞外基质模拟生物材料的进展与展望","authors":"Anuska Mishra ,&nbsp;Unnati Modi ,&nbsp;Rahul Sharma ,&nbsp;Dhiraj Bhatia ,&nbsp;Raghu Solanki","doi":"10.1016/j.bea.2024.100143","DOIUrl":null,"url":null,"abstract":"<div><div>Stem cell therapies hold immense promise for the treatment of a wide range of diseases; however, the full therapeutic potential remains untaped. This limitation arises primarily from our incomplete understanding of the complex mechanisms of stem cell niches. A promising avenue of research lies in the development of Extracellular Matrix (ECM)-based novel biomaterials, which closely mimic the natural microenvironment of stem cells. These biomaterials provide essential biophysical and biochemical cues necessary for mechanotransduction, thereby enhancing the efficacy and safety of stem cell therapies by precisely modulating stem cell fate. In this review, we discuss the critical role of the stem cell niche and its interplay with ECM, detailing its structural composition and functional significance. We further explore how the biophysical and biochemical factors of the ECM modulate specific transmembrane receptors, triggering intracellular signaling mechanisms that regulate cell morphology, cytoskeletal dynamics, viability, migration, and differentiation. Engineered biomaterials to replicate the properties of the ECM are discussed along with the incorporation of tailored biophysical and biochemical cues into scaffolds and biomaterials to modulate stem cell fate. Overall, this review underscores the innovative applications of ECM mimicking biomaterials in biomedical engineering, emphasizing their transformative potential to modulate stem cell fate and advance regenerative medicine.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical and biophysical cues of the extracellular matrix modulates stem cell fate: Progress and prospect in extracellular matrix mimicking biomaterials\",\"authors\":\"Anuska Mishra ,&nbsp;Unnati Modi ,&nbsp;Rahul Sharma ,&nbsp;Dhiraj Bhatia ,&nbsp;Raghu Solanki\",\"doi\":\"10.1016/j.bea.2024.100143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stem cell therapies hold immense promise for the treatment of a wide range of diseases; however, the full therapeutic potential remains untaped. This limitation arises primarily from our incomplete understanding of the complex mechanisms of stem cell niches. A promising avenue of research lies in the development of Extracellular Matrix (ECM)-based novel biomaterials, which closely mimic the natural microenvironment of stem cells. These biomaterials provide essential biophysical and biochemical cues necessary for mechanotransduction, thereby enhancing the efficacy and safety of stem cell therapies by precisely modulating stem cell fate. In this review, we discuss the critical role of the stem cell niche and its interplay with ECM, detailing its structural composition and functional significance. We further explore how the biophysical and biochemical factors of the ECM modulate specific transmembrane receptors, triggering intracellular signaling mechanisms that regulate cell morphology, cytoskeletal dynamics, viability, migration, and differentiation. Engineered biomaterials to replicate the properties of the ECM are discussed along with the incorporation of tailored biophysical and biochemical cues into scaffolds and biomaterials to modulate stem cell fate. Overall, this review underscores the innovative applications of ECM mimicking biomaterials in biomedical engineering, emphasizing their transformative potential to modulate stem cell fate and advance regenerative medicine.</div></div>\",\"PeriodicalId\":72384,\"journal\":{\"name\":\"Biomedical engineering advances\",\"volume\":\"9 \",\"pages\":\"Article 100143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical engineering advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266709922400032X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266709922400032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

干细胞疗法在治疗多种疾病方面有着巨大的前景;然而,它的全部治疗潜力仍未得到证实。这种限制主要源于我们对干细胞龛复杂机制的不完全理解。基于细胞外基质(ECM)的新型生物材料的开发是一种很有前途的研究途径,它可以模拟干细胞的自然微环境。这些生物材料为机械转导提供了必要的生物物理和生化线索,从而通过精确调节干细胞的命运来提高干细胞治疗的有效性和安全性。在这篇综述中,我们讨论了干细胞生态位的关键作用及其与ECM的相互作用,详细介绍了其结构组成和功能意义。我们进一步探讨了ECM的生物物理和生化因子如何调节特定的跨膜受体,触发细胞内信号机制,调节细胞形态、细胞骨架动力学、活力、迁移和分化。讨论了复制ECM特性的工程生物材料,以及将定制的生物物理和生化线索结合到支架和生物材料中来调节干细胞的命运。总之,这篇综述强调了ECM模拟生物材料在生物医学工程中的创新应用,强调了它们在调节干细胞命运和推进再生医学方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biochemical and biophysical cues of the extracellular matrix modulates stem cell fate: Progress and prospect in extracellular matrix mimicking biomaterials
Stem cell therapies hold immense promise for the treatment of a wide range of diseases; however, the full therapeutic potential remains untaped. This limitation arises primarily from our incomplete understanding of the complex mechanisms of stem cell niches. A promising avenue of research lies in the development of Extracellular Matrix (ECM)-based novel biomaterials, which closely mimic the natural microenvironment of stem cells. These biomaterials provide essential biophysical and biochemical cues necessary for mechanotransduction, thereby enhancing the efficacy and safety of stem cell therapies by precisely modulating stem cell fate. In this review, we discuss the critical role of the stem cell niche and its interplay with ECM, detailing its structural composition and functional significance. We further explore how the biophysical and biochemical factors of the ECM modulate specific transmembrane receptors, triggering intracellular signaling mechanisms that regulate cell morphology, cytoskeletal dynamics, viability, migration, and differentiation. Engineered biomaterials to replicate the properties of the ECM are discussed along with the incorporation of tailored biophysical and biochemical cues into scaffolds and biomaterials to modulate stem cell fate. Overall, this review underscores the innovative applications of ECM mimicking biomaterials in biomedical engineering, emphasizing their transformative potential to modulate stem cell fate and advance regenerative medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical engineering advances
Biomedical engineering advances Bioengineering, Biomedical Engineering
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信