{"title":"牙龈成纤维细胞植入生物工程支架治疗局部牙龈萎缩","authors":"Rajul Chordia , Aritri Ghosh , Shalini Dasgupta , Sayandeep Saha , Tirthankar Debnath , Ashit Kumar Pal , Ananya Barui","doi":"10.1016/j.bea.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><div>Gingival recession is a prevalent issue present in most of the Indian population, associated with interproximal tissue deficiency, leading to dental problems. Its treatment has remained a major problem in the field of periodontics due to autologous graft morbidity and limited healing associated with the current artificial grafts. The present study aims to is to develop bio-engineered chitosan-gelatin scaffolds seeded with primary gingival fibroblasts to address gingival recession as noninvasive grafts. Gingival fibroblasts were seeded on scaffolds with varying chitosan-gelatin ratios (1:1, 1:3) (v/v) and a chitosan control. Comprehensive characterization included morphological, mechanical, biochemical, and cellular analyses including cell viability, migration and transcriptomic studies. The chitosan-gelatin scaffolds (1:3) demonstrated a highly porous architecture with satisfactory biodegradation and swelling capacity. Furthermore, in vitro studies show significantly higher cellular compatibility, fibroblast migration, and F-actin expression. The upregulation of FGF-2 gene in this scaffold indicates its potential for promoting fibroblastic growth and improved wound healing potential. In addition, the antibacterial impact reflect its clinical potential of the fibroblast-seeded chitosan-gelatin (1:3) scaffold for potential tissue engineering applications in periodontal regeneration.</div></div>","PeriodicalId":72384,"journal":{"name":"Biomedical engineering advances","volume":"9 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gingival fibroblast seeded bioengineered scaffolds for treatment of localized gingival recession\",\"authors\":\"Rajul Chordia , Aritri Ghosh , Shalini Dasgupta , Sayandeep Saha , Tirthankar Debnath , Ashit Kumar Pal , Ananya Barui\",\"doi\":\"10.1016/j.bea.2024.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gingival recession is a prevalent issue present in most of the Indian population, associated with interproximal tissue deficiency, leading to dental problems. Its treatment has remained a major problem in the field of periodontics due to autologous graft morbidity and limited healing associated with the current artificial grafts. The present study aims to is to develop bio-engineered chitosan-gelatin scaffolds seeded with primary gingival fibroblasts to address gingival recession as noninvasive grafts. Gingival fibroblasts were seeded on scaffolds with varying chitosan-gelatin ratios (1:1, 1:3) (v/v) and a chitosan control. Comprehensive characterization included morphological, mechanical, biochemical, and cellular analyses including cell viability, migration and transcriptomic studies. The chitosan-gelatin scaffolds (1:3) demonstrated a highly porous architecture with satisfactory biodegradation and swelling capacity. Furthermore, in vitro studies show significantly higher cellular compatibility, fibroblast migration, and F-actin expression. The upregulation of FGF-2 gene in this scaffold indicates its potential for promoting fibroblastic growth and improved wound healing potential. In addition, the antibacterial impact reflect its clinical potential of the fibroblast-seeded chitosan-gelatin (1:3) scaffold for potential tissue engineering applications in periodontal regeneration.</div></div>\",\"PeriodicalId\":72384,\"journal\":{\"name\":\"Biomedical engineering advances\",\"volume\":\"9 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical engineering advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667099224000318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667099224000318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gingival fibroblast seeded bioengineered scaffolds for treatment of localized gingival recession
Gingival recession is a prevalent issue present in most of the Indian population, associated with interproximal tissue deficiency, leading to dental problems. Its treatment has remained a major problem in the field of periodontics due to autologous graft morbidity and limited healing associated with the current artificial grafts. The present study aims to is to develop bio-engineered chitosan-gelatin scaffolds seeded with primary gingival fibroblasts to address gingival recession as noninvasive grafts. Gingival fibroblasts were seeded on scaffolds with varying chitosan-gelatin ratios (1:1, 1:3) (v/v) and a chitosan control. Comprehensive characterization included morphological, mechanical, biochemical, and cellular analyses including cell viability, migration and transcriptomic studies. The chitosan-gelatin scaffolds (1:3) demonstrated a highly porous architecture with satisfactory biodegradation and swelling capacity. Furthermore, in vitro studies show significantly higher cellular compatibility, fibroblast migration, and F-actin expression. The upregulation of FGF-2 gene in this scaffold indicates its potential for promoting fibroblastic growth and improved wound healing potential. In addition, the antibacterial impact reflect its clinical potential of the fibroblast-seeded chitosan-gelatin (1:3) scaffold for potential tissue engineering applications in periodontal regeneration.