{"title":"生物传感器中的高灵敏度检测:倒置T通道和l通道电荷等离子体tfet的比较研究","authors":"Siva Rama Krishna Gorla, Chandan Kumar Pandey","doi":"10.1016/j.micrna.2024.208060","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a comprehensive analysis of a charge plasma vertical TFET based biosensor with an inverted T-shaped channel (IT-CPTFET), demonstrating improved sensitivity in biomolecules detection compared to the conventional L-shaped CPTFET based biosensor (L-CPTFET). Key design considerations include dual cavity positions, split drain region, dual-channel arrangement, and elevated source positions to optimize tunneling rates, resulting in increased drain current and improved sensitivity of the IT-CPTFET. Both IT-CPTFET and L-CPTFET have been explored as label-free biosensors using dielectric modulation, incorporating a nanocavity under the source electrode. By measuring important DC parameters like ON-state current <span><math><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>)</mo></mrow></math></span>, subthreshold swing <span><math><mrow><mo>(</mo><mi>S</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>)</mo></mrow></math></span>, and current-switching ratio (CSR) with the aid of 2D Sentaurus TCAD simulator at different K-values (1.54, 3.57, 6.3, 8, 12) helps to investigate the physics of IT-CPTFET, L-CPTFET and assess their ability to identify various charged and neutral biomolecules. The IT-CPTFET shows superior sensitivity, achieving an <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub></math></span> sensitivity of <span><math><mrow><mn>1</mn><mo>.</mo><mn>18</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>, compared to <span><math><mrow><mn>5</mn><mo>.</mo><mn>38</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span> for the L-CPTFET when detecting Gelatin (K = 12). An increase in the dielectric constant enhances the electric field in the tunneling region, leading to more efficient band-to-band tunneling, which increases the drain current and improves the overall sensitivity of the device. Furthermore, the sensitivity of the device is evaluated with respect to analog and RF parameters that are crucial for practical sensing applications. However, IT-CPTFET offers better performance, demonstrating <span><math><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> for transconductance sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span>) and <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> for cut-off frequency sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></msub></math></span>), while the L-CPTFET shows <span><math><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, respectively. Next, the sensitivity of devices with partially filled nanogaps, having fill-factors (FF) of 40% and 60%, affected by steric hindrance, is also evaluated for IT-CPTFET and L-CPTFET biosensors at <span><math><mrow><mi>K</mi><mo>=</mo><mn>12</mn></mrow></math></span>. This analysis includes different step profiles of biomolecules such as concave, convex, increasing, and decreasing step profiles. To account for the non-ideal state of IT-CPTFET based biosensors, the impact of irregular probe placement within the nano-cavity on sensitivity parameters related to ON-state current for a specific values of biomolecules is also analyzed using the TCAD simulator. Finally, Comparison with other CP-TFET biosensors highlights the superior performance and sensitivity of the IT-CPTFET in detecting a variety of biomolecules, making it a good candidate for high-sensitivity biosensing applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"198 ","pages":"Article 208060"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-sensitivity detection in biosensors: A comparative study of inverted T- and L-channel charge plasma TFETs\",\"authors\":\"Siva Rama Krishna Gorla, Chandan Kumar Pandey\",\"doi\":\"10.1016/j.micrna.2024.208060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a comprehensive analysis of a charge plasma vertical TFET based biosensor with an inverted T-shaped channel (IT-CPTFET), demonstrating improved sensitivity in biomolecules detection compared to the conventional L-shaped CPTFET based biosensor (L-CPTFET). Key design considerations include dual cavity positions, split drain region, dual-channel arrangement, and elevated source positions to optimize tunneling rates, resulting in increased drain current and improved sensitivity of the IT-CPTFET. Both IT-CPTFET and L-CPTFET have been explored as label-free biosensors using dielectric modulation, incorporating a nanocavity under the source electrode. By measuring important DC parameters like ON-state current <span><math><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>)</mo></mrow></math></span>, subthreshold swing <span><math><mrow><mo>(</mo><mi>S</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>)</mo></mrow></math></span>, and current-switching ratio (CSR) with the aid of 2D Sentaurus TCAD simulator at different K-values (1.54, 3.57, 6.3, 8, 12) helps to investigate the physics of IT-CPTFET, L-CPTFET and assess their ability to identify various charged and neutral biomolecules. The IT-CPTFET shows superior sensitivity, achieving an <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub></math></span> sensitivity of <span><math><mrow><mn>1</mn><mo>.</mo><mn>18</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>, compared to <span><math><mrow><mn>5</mn><mo>.</mo><mn>38</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span> for the L-CPTFET when detecting Gelatin (K = 12). An increase in the dielectric constant enhances the electric field in the tunneling region, leading to more efficient band-to-band tunneling, which increases the drain current and improves the overall sensitivity of the device. Furthermore, the sensitivity of the device is evaluated with respect to analog and RF parameters that are crucial for practical sensing applications. However, IT-CPTFET offers better performance, demonstrating <span><math><mrow><mn>1</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> for transconductance sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span>) and <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> for cut-off frequency sensitivity (<span><math><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></msub></math></span>), while the L-CPTFET shows <span><math><mrow><mn>4</mn><mo>.</mo><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, respectively. Next, the sensitivity of devices with partially filled nanogaps, having fill-factors (FF) of 40% and 60%, affected by steric hindrance, is also evaluated for IT-CPTFET and L-CPTFET biosensors at <span><math><mrow><mi>K</mi><mo>=</mo><mn>12</mn></mrow></math></span>. This analysis includes different step profiles of biomolecules such as concave, convex, increasing, and decreasing step profiles. To account for the non-ideal state of IT-CPTFET based biosensors, the impact of irregular probe placement within the nano-cavity on sensitivity parameters related to ON-state current for a specific values of biomolecules is also analyzed using the TCAD simulator. Finally, Comparison with other CP-TFET biosensors highlights the superior performance and sensitivity of the IT-CPTFET in detecting a variety of biomolecules, making it a good candidate for high-sensitivity biosensing applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"198 \",\"pages\":\"Article 208060\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324003108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324003108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
本研究全面分析了一种带倒t形通道的电荷等离子体垂直ttfet生物传感器(IT-CPTFET),证明了与传统的l形CPTFET生物传感器(L-CPTFET)相比,该传感器在生物分子检测方面的灵敏度有所提高。关键的设计考虑因素包括双腔位置、分离漏极区域、双通道布置和提高源位置,以优化隧道速率,从而增加漏极电流并提高IT-CPTFET的灵敏度。IT-CPTFET和L-CPTFET都已被探索作为无标签生物传感器,使用介电调制,在源电极下结合纳米腔。利用2D Sentaurus TCAD模拟器测量不同k值(1.54,3.57,6.3,8,12)下的ON-state current (ION)、subthreshold swing (SSAvg)、current-switching ratio (CSR)等重要直流参数,有助于研究IT-CPTFET、L-CPTFET的物理特性,并评估其识别各种带电和中性生物分子的能力。在检测明胶(K = 12)时,与L-CPTFET相比,IT-CPTFET表现出优越的灵敏度,离子灵敏度为1.18×108,而L-CPTFET为5.38×107。介电常数的增加增强了隧穿区的电场,导致更有效的带对带隧穿,从而增加漏极电流并提高器件的整体灵敏度。此外,该器件的灵敏度是评估相对于模拟和射频参数,是至关重要的实际传感应用。然而,IT-CPTFET具有更好的性能,其跨导灵敏度(Sgm)和截止频率灵敏度(SfT)分别为1.9×106和3.8×105,而L-CPTFET分别为4.9×105和1.3×105。接下来,在K=12时,还评估了填充因子(FF)为40%和60%的部分填充纳米间隙器件受位阻影响的灵敏度,用于IT-CPTFET和L-CPTFET生物传感器。该分析包括生物分子的不同阶跃分布,如凹阶跃、凸阶跃、递增阶跃和递减阶跃。为了解释基于IT-CPTFET的生物传感器的非理想状态,还使用TCAD模拟器分析了纳米腔内不规则探针放置对特定生物分子的导通状态电流相关灵敏度参数的影响。最后,通过与其他CP-TFET生物传感器的比较,突出了it - cptfet在检测多种生物分子方面的优越性能和灵敏度,使其成为高灵敏度生物传感应用的良好候选。
High-sensitivity detection in biosensors: A comparative study of inverted T- and L-channel charge plasma TFETs
This work presents a comprehensive analysis of a charge plasma vertical TFET based biosensor with an inverted T-shaped channel (IT-CPTFET), demonstrating improved sensitivity in biomolecules detection compared to the conventional L-shaped CPTFET based biosensor (L-CPTFET). Key design considerations include dual cavity positions, split drain region, dual-channel arrangement, and elevated source positions to optimize tunneling rates, resulting in increased drain current and improved sensitivity of the IT-CPTFET. Both IT-CPTFET and L-CPTFET have been explored as label-free biosensors using dielectric modulation, incorporating a nanocavity under the source electrode. By measuring important DC parameters like ON-state current , subthreshold swing , and current-switching ratio (CSR) with the aid of 2D Sentaurus TCAD simulator at different K-values (1.54, 3.57, 6.3, 8, 12) helps to investigate the physics of IT-CPTFET, L-CPTFET and assess their ability to identify various charged and neutral biomolecules. The IT-CPTFET shows superior sensitivity, achieving an sensitivity of , compared to for the L-CPTFET when detecting Gelatin (K = 12). An increase in the dielectric constant enhances the electric field in the tunneling region, leading to more efficient band-to-band tunneling, which increases the drain current and improves the overall sensitivity of the device. Furthermore, the sensitivity of the device is evaluated with respect to analog and RF parameters that are crucial for practical sensing applications. However, IT-CPTFET offers better performance, demonstrating for transconductance sensitivity () and for cut-off frequency sensitivity (), while the L-CPTFET shows and , respectively. Next, the sensitivity of devices with partially filled nanogaps, having fill-factors (FF) of 40% and 60%, affected by steric hindrance, is also evaluated for IT-CPTFET and L-CPTFET biosensors at . This analysis includes different step profiles of biomolecules such as concave, convex, increasing, and decreasing step profiles. To account for the non-ideal state of IT-CPTFET based biosensors, the impact of irregular probe placement within the nano-cavity on sensitivity parameters related to ON-state current for a specific values of biomolecules is also analyzed using the TCAD simulator. Finally, Comparison with other CP-TFET biosensors highlights the superior performance and sensitivity of the IT-CPTFET in detecting a variety of biomolecules, making it a good candidate for high-sensitivity biosensing applications.