对于取证和安全环境中的大型在线数据集的分析,LIWC是否可靠、高效和有效?

IF 2.1
Madison Hunter, Tim Grant
{"title":"对于取证和安全环境中的大型在线数据集的分析,LIWC是否可靠、高效和有效?","authors":"Madison Hunter,&nbsp;Tim Grant","doi":"10.1016/j.acorp.2025.100118","DOIUrl":null,"url":null,"abstract":"<div><div>This article evaluates the reliability, efficiency, and effectiveness of Linguistic Inquiry and Word Count (LIWC; Boyd et al., 2022) for the analysis of a white nationalist forum. This is important because LIWC has been the computational tool of choice for scores of studies generally and many examining extremist content in a forensic or security context. Our purpose, therefore, is to understand whether LIWC can be depended upon for large-scale analyses; we initially examine this here using a small sample of posts from a set of just eight users and manually checking the program's automated codings of a subset of categories. Our results show that the LIWC coding cannot be relied upon – precision falls to as low as 49.6 % and recall as low as 41.7 % for some categories. It would be possible to engage in considerable manual correction of these results, but this undermines its purported efficiency for large datasets.</div></div>","PeriodicalId":72254,"journal":{"name":"Applied Corpus Linguistics","volume":"5 1","pages":"Article 100118"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is LIWC reliable, efficient, and effective for the analysis of large online datasets in forensic and security contexts?\",\"authors\":\"Madison Hunter,&nbsp;Tim Grant\",\"doi\":\"10.1016/j.acorp.2025.100118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article evaluates the reliability, efficiency, and effectiveness of Linguistic Inquiry and Word Count (LIWC; Boyd et al., 2022) for the analysis of a white nationalist forum. This is important because LIWC has been the computational tool of choice for scores of studies generally and many examining extremist content in a forensic or security context. Our purpose, therefore, is to understand whether LIWC can be depended upon for large-scale analyses; we initially examine this here using a small sample of posts from a set of just eight users and manually checking the program's automated codings of a subset of categories. Our results show that the LIWC coding cannot be relied upon – precision falls to as low as 49.6 % and recall as low as 41.7 % for some categories. It would be possible to engage in considerable manual correction of these results, but this undermines its purported efficiency for large datasets.</div></div>\",\"PeriodicalId\":72254,\"journal\":{\"name\":\"Applied Corpus Linguistics\",\"volume\":\"5 1\",\"pages\":\"Article 100118\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Corpus Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666799125000012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Corpus Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666799125000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了语言查询和单词计数(LIWC)的可靠性、效率和有效性。Boyd et al., 2022)对白人民族主义论坛的分析。这一点很重要,因为LIWC一直是许多研究和许多在法医或安全环境中检查极端主义内容的首选计算工具。因此,我们的目的是了解LIWC是否可以用于大规模分析;在这里,我们首先使用来自仅8个用户的帖子的小样本来检查这一点,并手动检查程序对类别子集的自动编码。我们的结果表明,LIWC编码不可靠,某些类别的准确率低至49.6%,召回率低至41.7%。对这些结果进行大量的人工校正是可能的,但这破坏了它对大型数据集的据称效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Is LIWC reliable, efficient, and effective for the analysis of large online datasets in forensic and security contexts?
This article evaluates the reliability, efficiency, and effectiveness of Linguistic Inquiry and Word Count (LIWC; Boyd et al., 2022) for the analysis of a white nationalist forum. This is important because LIWC has been the computational tool of choice for scores of studies generally and many examining extremist content in a forensic or security context. Our purpose, therefore, is to understand whether LIWC can be depended upon for large-scale analyses; we initially examine this here using a small sample of posts from a set of just eight users and manually checking the program's automated codings of a subset of categories. Our results show that the LIWC coding cannot be relied upon – precision falls to as low as 49.6 % and recall as low as 41.7 % for some categories. It would be possible to engage in considerable manual correction of these results, but this undermines its purported efficiency for large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Corpus Linguistics
Applied Corpus Linguistics Linguistics and Language
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
70 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信