T.J. Barrett , M. Li , T. Gouhier , G. Rilov , B. Helmuth , F. Choi , S. Filin , S. Müftü
{"title":"精细尺度的表面复杂性促进了极端温度,但减少了海岸岩石上避难所的空间范围","authors":"T.J. Barrett , M. Li , T. Gouhier , G. Rilov , B. Helmuth , F. Choi , S. Filin , S. Müftü","doi":"10.1016/j.ecolmodel.2024.110969","DOIUrl":null,"url":null,"abstract":"<div><div>The physical structure of microhabitats, especially orientation to direct solar radiation, can radically influence the body temperatures of individual organisms, their physiological performance, and survival. Using a numerical approach via finite element (FE) analysis to simulate the spatial and temporal temperature variations in rocky intertidal habitats, we systematically explored the role of substrate roughness in driving variability of surface temperatures at scales relevant to very small (cm) organisms. This approach accounts for three-dimensional heat exchange among fine-scale (mm-cm) surface features through radiation, convection, and conduction. Analyses were performed for a surface mapped using a terrestrial laser scanner at an intertidal site on the coast of Haifa, Israel. Simulation results provided comparable temperatures to those recorded in the field via infrared camera. A series of rough surfaces were generated numerically to explore relationships between the scale of surface roughness and microhabitat temperatures, and how these relationships changed both over a diurnal cycle and across seasons. Overall, increasing habitat complexity had little influence on the average temperature of a ∼1 m<sup>2</sup> surface, despite differences of up to 25 °C among microhabitats within that surface. Temperature magnitudes of the hottest and coolest microhabitats increased markedly with roughness, generally supporting the ‘habitat heterogeneity hypothesis’ where a range of thermal microenvironments is predicted to increase with surface roughness. Here, we attribute this pattern to the observation that the presence of cool, shaded “valley” microhabitats is invariably accompanied by the presence of “peaks” exposed to full, direct solar radiation.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"501 ","pages":"Article 110969"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-scale surface complexity promotes temperature extremes but reduces the spatial extent of refugia on coastal rocks\",\"authors\":\"T.J. Barrett , M. Li , T. Gouhier , G. Rilov , B. Helmuth , F. Choi , S. Filin , S. Müftü\",\"doi\":\"10.1016/j.ecolmodel.2024.110969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The physical structure of microhabitats, especially orientation to direct solar radiation, can radically influence the body temperatures of individual organisms, their physiological performance, and survival. Using a numerical approach via finite element (FE) analysis to simulate the spatial and temporal temperature variations in rocky intertidal habitats, we systematically explored the role of substrate roughness in driving variability of surface temperatures at scales relevant to very small (cm) organisms. This approach accounts for three-dimensional heat exchange among fine-scale (mm-cm) surface features through radiation, convection, and conduction. Analyses were performed for a surface mapped using a terrestrial laser scanner at an intertidal site on the coast of Haifa, Israel. Simulation results provided comparable temperatures to those recorded in the field via infrared camera. A series of rough surfaces were generated numerically to explore relationships between the scale of surface roughness and microhabitat temperatures, and how these relationships changed both over a diurnal cycle and across seasons. Overall, increasing habitat complexity had little influence on the average temperature of a ∼1 m<sup>2</sup> surface, despite differences of up to 25 °C among microhabitats within that surface. Temperature magnitudes of the hottest and coolest microhabitats increased markedly with roughness, generally supporting the ‘habitat heterogeneity hypothesis’ where a range of thermal microenvironments is predicted to increase with surface roughness. Here, we attribute this pattern to the observation that the presence of cool, shaded “valley” microhabitats is invariably accompanied by the presence of “peaks” exposed to full, direct solar radiation.</div></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"501 \",\"pages\":\"Article 110969\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380024003570\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024003570","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Fine-scale surface complexity promotes temperature extremes but reduces the spatial extent of refugia on coastal rocks
The physical structure of microhabitats, especially orientation to direct solar radiation, can radically influence the body temperatures of individual organisms, their physiological performance, and survival. Using a numerical approach via finite element (FE) analysis to simulate the spatial and temporal temperature variations in rocky intertidal habitats, we systematically explored the role of substrate roughness in driving variability of surface temperatures at scales relevant to very small (cm) organisms. This approach accounts for three-dimensional heat exchange among fine-scale (mm-cm) surface features through radiation, convection, and conduction. Analyses were performed for a surface mapped using a terrestrial laser scanner at an intertidal site on the coast of Haifa, Israel. Simulation results provided comparable temperatures to those recorded in the field via infrared camera. A series of rough surfaces were generated numerically to explore relationships between the scale of surface roughness and microhabitat temperatures, and how these relationships changed both over a diurnal cycle and across seasons. Overall, increasing habitat complexity had little influence on the average temperature of a ∼1 m2 surface, despite differences of up to 25 °C among microhabitats within that surface. Temperature magnitudes of the hottest and coolest microhabitats increased markedly with roughness, generally supporting the ‘habitat heterogeneity hypothesis’ where a range of thermal microenvironments is predicted to increase with surface roughness. Here, we attribute this pattern to the observation that the presence of cool, shaded “valley” microhabitats is invariably accompanied by the presence of “peaks” exposed to full, direct solar radiation.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).