用于河流、河口和海水中分光光度pH测量的纯化酚红的物理化学特性

IF 4.1 Q1 CHEMISTRY, ANALYTICAL
Kalla L. Fleger, Robert H. Byrne, Xuewu Liu
{"title":"用于河流、河口和海水中分光光度pH测量的纯化酚红的物理化学特性","authors":"Kalla L. Fleger,&nbsp;Robert H. Byrne,&nbsp;Xuewu Liu","doi":"10.1016/j.talo.2024.100380","DOIUrl":null,"url":null,"abstract":"<div><div>Phenol red (PR) is one of several sulfonephthalein indicators used to provide rapid and precise spectrophotometric pH measurements of seawater and similar solutions. With an approximate pH-indicating range of 5.9 to 7.7, this dye is well suited to fill a critical gap in spectrophotometric pH-measurement capabilities – e.g., the slightly acidic waters of environments low in oxygen or high in carbon dioxide. For highest-quality measurements, the salinity and temperature dependence of indicator behavior must be established, but previous characterizations of PR were for impure indicator powder or for low-salinity solutions only. This work is the first to comprehensively characterize purified phenol red over wide ranges of temperature (<em>T</em>; absolute temperature in K) and salinity (<em>S</em><sub>P</sub>; practical scale). Measurements of spectrophotometric pH<sub>T</sub> (total hydrogen ion concentration scale) are given by:<span><span><span><math><mrow><msub><mtext>pH</mtext><mi>T</mi></msub><mo>=</mo><mo>−</mo><mtext>log</mtext><mrow><mo>(</mo><msubsup><mi>K</mi><mn>2</mn><mi>T</mi></msubsup><msub><mi>e</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><mtext>log</mtext><mrow><mo>(</mo><mrow><mo>(</mo><mi>R</mi><mo>−</mo><msub><mi>e</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>R</mi><msub><mi>e</mi><mn>4</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span></span></span>where <em>K</em><sub>2</sub><sup>T</sup> is the second dissociation constant of fully protonated PR, and <em>e</em><sub>1</sub>, <em>e</em><sub>2</sub>, and <em>e</em><sub>4</sub> are PR molar absorption coefficient ratios. The term <em>R</em> is the ratio of absorbances measured in the sample of interest at 558 and 433 nm. In this work, we derived a simplified method for determining the parameter <em>e</em><sub>1</sub> of any sulfonephthalein indicator and also fully characterized PR physical–chemical characteristics for 275.15 ≤ <em>T</em> ≤ 308.15 K and 0 ≤ <em>S</em><sub>P</sub> ≤ 40, yielding:<span><span><span><math><mtable><mtr><mtd><mrow><msub><mi>e</mi><mn>1</mn></msub><mo>=</mo><mo>−</mo><mn>2.12261</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>+</mo><mn>1.37448</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mi>T</mi><mo>+</mo><mn>3.061</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><msup><mi>T</mi><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>e</mi><mn>2</mn></msub><mo>=</mo><mn>3.6429426</mn><mo>−</mo><mn>2.8139</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mi>T</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>e</mi><mn>4</mn></msub><mo>=</mo><mn>8.0884775</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>6.2187</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><msub><mi>S</mi><mi>P</mi></msub><mo>−</mo><mn>14.093126</mn><msup><mi>T</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>5.005</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mn>2</mn></msubsup><msup><mi>T</mi><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><mo>−</mo><mtext>log</mtext><mrow><mo>(</mo><msubsup><mi>K</mi><mrow><mn>2</mn></mrow><mi>T</mi></msubsup><msub><mi>e</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mn>6.0900807</mn><mo>−</mo><mn>2.6700911</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><mo>+</mo><mn>0.116252996</mn><msub><mi>S</mi><mi>P</mi></msub><mo>−</mo><mn>2.5437592</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>1.5</mn></mrow></msubsup></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><mn>3.0176155</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mn>2</mn></msubsup><mo>−</mo><mn>1.396307</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>2.5</mn></mrow></msubsup><mo>+</mo><mn>7802.66</mn><msup><mi>T</mi><mrow><mo>−</mo><mn>1.5</mn></mrow></msup><mo>+</mo><mn>0.7402604</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><mtext>ln</mtext><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>−</mo><mn>0.110614654</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><msup><mi>T</mi><mrow><mn>0.5</mn></mrow></msup></mrow></mtd></mtr></mtable></math></span></span></span></div><div>To test the performance of this characterization, we measured pH at sea using both PR and meta-cresol purple (the standard indicator for measuring surface-to-deep open-ocean profiles) and found substantial agreement over the entire water column. The PR-based equation for measuring pH<sub>T</sub> can be combined with the parameterizations of other indicators to provide high-quality measurements over pH 4 to 9 for a wide range of solutions. This seamless continuity can be especially important in monitoring long-term change (e.g., ocean acidification) that may drive the pH of some waters of interest from the indicating range of one dye to another.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"11 ","pages":"Article 100380"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical–chemical characterization of purified phenol red for spectrophotometric pH measurements in riverine, estuarine, and oceanic waters\",\"authors\":\"Kalla L. Fleger,&nbsp;Robert H. Byrne,&nbsp;Xuewu Liu\",\"doi\":\"10.1016/j.talo.2024.100380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phenol red (PR) is one of several sulfonephthalein indicators used to provide rapid and precise spectrophotometric pH measurements of seawater and similar solutions. With an approximate pH-indicating range of 5.9 to 7.7, this dye is well suited to fill a critical gap in spectrophotometric pH-measurement capabilities – e.g., the slightly acidic waters of environments low in oxygen or high in carbon dioxide. For highest-quality measurements, the salinity and temperature dependence of indicator behavior must be established, but previous characterizations of PR were for impure indicator powder or for low-salinity solutions only. This work is the first to comprehensively characterize purified phenol red over wide ranges of temperature (<em>T</em>; absolute temperature in K) and salinity (<em>S</em><sub>P</sub>; practical scale). Measurements of spectrophotometric pH<sub>T</sub> (total hydrogen ion concentration scale) are given by:<span><span><span><math><mrow><msub><mtext>pH</mtext><mi>T</mi></msub><mo>=</mo><mo>−</mo><mtext>log</mtext><mrow><mo>(</mo><msubsup><mi>K</mi><mn>2</mn><mi>T</mi></msubsup><msub><mi>e</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><mtext>log</mtext><mrow><mo>(</mo><mrow><mo>(</mo><mi>R</mi><mo>−</mo><msub><mi>e</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>R</mi><msub><mi>e</mi><mn>4</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span></span></span>where <em>K</em><sub>2</sub><sup>T</sup> is the second dissociation constant of fully protonated PR, and <em>e</em><sub>1</sub>, <em>e</em><sub>2</sub>, and <em>e</em><sub>4</sub> are PR molar absorption coefficient ratios. The term <em>R</em> is the ratio of absorbances measured in the sample of interest at 558 and 433 nm. In this work, we derived a simplified method for determining the parameter <em>e</em><sub>1</sub> of any sulfonephthalein indicator and also fully characterized PR physical–chemical characteristics for 275.15 ≤ <em>T</em> ≤ 308.15 K and 0 ≤ <em>S</em><sub>P</sub> ≤ 40, yielding:<span><span><span><math><mtable><mtr><mtd><mrow><msub><mi>e</mi><mn>1</mn></msub><mo>=</mo><mo>−</mo><mn>2.12261</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>+</mo><mn>1.37448</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mi>T</mi><mo>+</mo><mn>3.061</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><msup><mi>T</mi><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>e</mi><mn>2</mn></msub><mo>=</mo><mn>3.6429426</mn><mo>−</mo><mn>2.8139</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mi>T</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>e</mi><mn>4</mn></msub><mo>=</mo><mn>8.0884775</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>6.2187</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><msub><mi>S</mi><mi>P</mi></msub><mo>−</mo><mn>14.093126</mn><msup><mi>T</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>5.005</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mn>2</mn></msubsup><msup><mi>T</mi><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><mo>−</mo><mtext>log</mtext><mrow><mo>(</mo><msubsup><mi>K</mi><mrow><mn>2</mn></mrow><mi>T</mi></msubsup><msub><mi>e</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>=</mo><mn>6.0900807</mn><mo>−</mo><mn>2.6700911</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><mo>+</mo><mn>0.116252996</mn><msub><mi>S</mi><mi>P</mi></msub><mo>−</mo><mn>2.5437592</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>1.5</mn></mrow></msubsup></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><mn>3.0176155</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mn>2</mn></msubsup><mo>−</mo><mn>1.396307</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>2.5</mn></mrow></msubsup><mo>+</mo><mn>7802.66</mn><msup><mi>T</mi><mrow><mo>−</mo><mn>1.5</mn></mrow></msup><mo>+</mo><mn>0.7402604</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><mtext>ln</mtext><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>−</mo><mn>0.110614654</mn><msubsup><mi>S</mi><mrow><mi>P</mi></mrow><mrow><mn>0.5</mn></mrow></msubsup><msup><mi>T</mi><mrow><mn>0.5</mn></mrow></msup></mrow></mtd></mtr></mtable></math></span></span></span></div><div>To test the performance of this characterization, we measured pH at sea using both PR and meta-cresol purple (the standard indicator for measuring surface-to-deep open-ocean profiles) and found substantial agreement over the entire water column. The PR-based equation for measuring pH<sub>T</sub> can be combined with the parameterizations of other indicators to provide high-quality measurements over pH 4 to 9 for a wide range of solutions. This seamless continuity can be especially important in monitoring long-term change (e.g., ocean acidification) that may drive the pH of some waters of interest from the indicating range of one dye to another.</div></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"11 \",\"pages\":\"Article 100380\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

苯酚红(PR)是几种磺苯酞指示剂之一,用于提供海水和类似溶液的快速精确分光光度pH测量。该染料的ph指示范围约为5.9至7.7,非常适合填补分光光度法ph测量能力的关键空白-例如,低氧或高二氧化碳环境中的微酸性水。为了获得最高质量的测量,必须建立指示剂行为对盐度和温度的依赖关系,但以前的PR表征仅适用于不纯指示剂粉末或低盐度溶液。这项工作是第一个在广泛的温度范围(T;绝对温度(K)和盐度(SP;实际规模)。分光光度pHT(总氢离子浓度标度)的测量公式为:pHT=−log(K2Te2)+log((R−e1)/(1−Re4)),其中K2T为完全质子化PR的第二个解离常数,e1、e2和e4为PR的摩尔吸收系数比。R项是在558和433 nm处测得的样品的吸光度之比。在本文中,我们推导了一种确定任何磺酞指示剂参数e1的简化方法,并充分表征了275.15≤T≤308.15 K和0≤SP≤40时PR的物理化学特性。收益率:e1 =−2.12261×10−3 + 1.37448×10−5 T + 3.061×10−sp0.5t2e2 = 3.6429426−2.8139×10−3 te4 = 8.0884775×10−2 + 6.2187×10−5 sp−14.093126 T−1−5.005×10−12 sp2t2−日志(K2Te2) = 6.0900807−2.6700911 sp0.5 + 0.116252996 sp−2.5437592×10−2 sp1.5 + 3.0176155×10−3 sp2−1.396307×10−4 sp2.5 T−1.5 + 0.7402604 + 7802.66 sp0.5ln (T)−0.110614654 sp0.5t0.5to测试性能的表征,我们使用PR和间甲酚紫色(测量开阔海洋表层到深海剖面的标准指标)测量了海洋的pH值,并在整个水柱上发现了实质性的一致。基于pr的pHT测量方程可以与其他指标的参数化相结合,在pH 4至9范围内提供高质量的测量,适用于各种解决方案。这种无缝的连续性对于监测长期变化(例如海洋酸化)尤其重要,因为这种变化可能会使某些感兴趣的水的pH值从一种染料的指示范围变为另一种染料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physical–chemical characterization of purified phenol red for spectrophotometric pH measurements in riverine, estuarine, and oceanic waters

Physical–chemical characterization of purified phenol red for spectrophotometric pH measurements in riverine, estuarine, and oceanic waters
Phenol red (PR) is one of several sulfonephthalein indicators used to provide rapid and precise spectrophotometric pH measurements of seawater and similar solutions. With an approximate pH-indicating range of 5.9 to 7.7, this dye is well suited to fill a critical gap in spectrophotometric pH-measurement capabilities – e.g., the slightly acidic waters of environments low in oxygen or high in carbon dioxide. For highest-quality measurements, the salinity and temperature dependence of indicator behavior must be established, but previous characterizations of PR were for impure indicator powder or for low-salinity solutions only. This work is the first to comprehensively characterize purified phenol red over wide ranges of temperature (T; absolute temperature in K) and salinity (SP; practical scale). Measurements of spectrophotometric pHT (total hydrogen ion concentration scale) are given by:pHT=log(K2Te2)+log((Re1)/(1Re4))where K2T is the second dissociation constant of fully protonated PR, and e1, e2, and e4 are PR molar absorption coefficient ratios. The term R is the ratio of absorbances measured in the sample of interest at 558 and 433 nm. In this work, we derived a simplified method for determining the parameter e1 of any sulfonephthalein indicator and also fully characterized PR physical–chemical characteristics for 275.15 ≤ T ≤ 308.15 K and 0 ≤ SP ≤ 40, yielding:e1=2.12261×103+1.37448×105T+3.061×1010SP0.5T2e2=3.64294262.8139×103Te4=8.0884775×102+6.2187×105SP14.093126T15.005×1012SP2T2log(K2Te2)=6.09008072.6700911SP0.5+0.116252996SP2.5437592×102SP1.5+3.0176155×103SP21.396307×104SP2.5+7802.66T1.5+0.7402604SP0.5ln(T)0.110614654SP0.5T0.5
To test the performance of this characterization, we measured pH at sea using both PR and meta-cresol purple (the standard indicator for measuring surface-to-deep open-ocean profiles) and found substantial agreement over the entire water column. The PR-based equation for measuring pHT can be combined with the parameterizations of other indicators to provide high-quality measurements over pH 4 to 9 for a wide range of solutions. This seamless continuity can be especially important in monitoring long-term change (e.g., ocean acidification) that may drive the pH of some waters of interest from the indicating range of one dye to another.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信