提高印刷超级电容器的比电容和能量密度:活性炭和电解质动力学的作用

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hamed Pourkheirollah , Remuel Isaac M. Vitto , Aleksandrs Volperts , Steffen Thrane Vindt , Līga Grīnberga , Gints Kučinskis , Jari Keskinen , Matti Mäntysalo
{"title":"提高印刷超级电容器的比电容和能量密度:活性炭和电解质动力学的作用","authors":"Hamed Pourkheirollah ,&nbsp;Remuel Isaac M. Vitto ,&nbsp;Aleksandrs Volperts ,&nbsp;Steffen Thrane Vindt ,&nbsp;Līga Grīnberga ,&nbsp;Gints Kučinskis ,&nbsp;Jari Keskinen ,&nbsp;Matti Mäntysalo","doi":"10.1016/j.cartre.2024.100436","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates Activated Wood Carbon (AWC) as an electrode material for advancing printed supercapacitors (SCs). AWC, derived from biomass, offers a sustainable alternative to conventional activated carbons. The research highlights the interplay between AWC's structural properties and electrolyte compatibility, addressing challenges in energy storage technologies. Comprehensive analyses, including sorptometry, Raman spectroscopy, X-ray diffraction (XRD), and electrochemical assessments, reveal that AWC's graphitization and structural ordering significantly influence its performance.</div><div>Printed SCs fabricated with AWC demonstrate superior performance compared to those using benchmark Kuraray YP-80F activated carbon, achieving up to 93 % and 90 % higher specific capacitance and energy density at 1.0 V and 1.2 V, respectively. The enhanced performance is attributed to AWC's increased surface area and pore volume, which provide abundant ion storage sites and improve ion mobility. Furthermore, the porous structure of AWC facilitates better compatibility with K<sub>x</sub>H<sub>y</sub>PO<sub>4</sub> electrolytes compared to NaCl, with pseudocapacitive effects also contributing to the improved energy storage behavior.</div><div>This work underscores the potential of biomass-derived carbon materials in creating high-performance, sustainable SCs. Future efforts will focus on optimizing electrode and electrolyte configurations to further enhance device performance, supporting the transition toward renewable energy solutions.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"18 ","pages":"Article 100436"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing specific capacitance and energy density in printed supercapacitors: The role of activated wood carbon and electrolyte dynamics\",\"authors\":\"Hamed Pourkheirollah ,&nbsp;Remuel Isaac M. Vitto ,&nbsp;Aleksandrs Volperts ,&nbsp;Steffen Thrane Vindt ,&nbsp;Līga Grīnberga ,&nbsp;Gints Kučinskis ,&nbsp;Jari Keskinen ,&nbsp;Matti Mäntysalo\",\"doi\":\"10.1016/j.cartre.2024.100436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates Activated Wood Carbon (AWC) as an electrode material for advancing printed supercapacitors (SCs). AWC, derived from biomass, offers a sustainable alternative to conventional activated carbons. The research highlights the interplay between AWC's structural properties and electrolyte compatibility, addressing challenges in energy storage technologies. Comprehensive analyses, including sorptometry, Raman spectroscopy, X-ray diffraction (XRD), and electrochemical assessments, reveal that AWC's graphitization and structural ordering significantly influence its performance.</div><div>Printed SCs fabricated with AWC demonstrate superior performance compared to those using benchmark Kuraray YP-80F activated carbon, achieving up to 93 % and 90 % higher specific capacitance and energy density at 1.0 V and 1.2 V, respectively. The enhanced performance is attributed to AWC's increased surface area and pore volume, which provide abundant ion storage sites and improve ion mobility. Furthermore, the porous structure of AWC facilitates better compatibility with K<sub>x</sub>H<sub>y</sub>PO<sub>4</sub> electrolytes compared to NaCl, with pseudocapacitive effects also contributing to the improved energy storage behavior.</div><div>This work underscores the potential of biomass-derived carbon materials in creating high-performance, sustainable SCs. Future efforts will focus on optimizing electrode and electrolyte configurations to further enhance device performance, supporting the transition toward renewable energy solutions.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"18 \",\"pages\":\"Article 100436\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924001159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924001159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了活性炭(AWC)作为推进印刷超级电容器(sc)的电极材料。AWC来源于生物质,是传统活性炭的可持续替代品。该研究强调了AWC结构特性与电解质相容性之间的相互作用,解决了储能技术中的挑战。包括吸光法、拉曼光谱、x射线衍射(XRD)和电化学评价在内的综合分析表明,AWC的石墨化和结构有序对其性能有显著影响。与使用基准的Kuraray YP-80F活性炭相比,用AWC制备的打印sc表现出卓越的性能,在1.0 V和1.2 V下分别实现高达93%和90%的比电容和能量密度提高。AWC的表面积和孔容增加了,提供了丰富的离子存储位点,提高了离子的迁移率。此外,与NaCl相比,AWC的多孔结构使其与KxHyPO4电解质的相容性更好,假电容效应也有助于提高储能性能。这项工作强调了生物质衍生碳材料在创造高性能、可持续的碳纳米管方面的潜力。未来的工作将集中在优化电极和电解质配置,以进一步提高设备性能,支持向可再生能源解决方案的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing specific capacitance and energy density in printed supercapacitors: The role of activated wood carbon and electrolyte dynamics

Enhancing specific capacitance and energy density in printed supercapacitors: The role of activated wood carbon and electrolyte dynamics
This study investigates Activated Wood Carbon (AWC) as an electrode material for advancing printed supercapacitors (SCs). AWC, derived from biomass, offers a sustainable alternative to conventional activated carbons. The research highlights the interplay between AWC's structural properties and electrolyte compatibility, addressing challenges in energy storage technologies. Comprehensive analyses, including sorptometry, Raman spectroscopy, X-ray diffraction (XRD), and electrochemical assessments, reveal that AWC's graphitization and structural ordering significantly influence its performance.
Printed SCs fabricated with AWC demonstrate superior performance compared to those using benchmark Kuraray YP-80F activated carbon, achieving up to 93 % and 90 % higher specific capacitance and energy density at 1.0 V and 1.2 V, respectively. The enhanced performance is attributed to AWC's increased surface area and pore volume, which provide abundant ion storage sites and improve ion mobility. Furthermore, the porous structure of AWC facilitates better compatibility with KxHyPO4 electrolytes compared to NaCl, with pseudocapacitive effects also contributing to the improved energy storage behavior.
This work underscores the potential of biomass-derived carbon materials in creating high-performance, sustainable SCs. Future efforts will focus on optimizing electrode and electrolyte configurations to further enhance device performance, supporting the transition toward renewable energy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信