台湾水文诱发的地应力变化及其与地震活动性的关系

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Ya-Ju Hsu , Roland Bürgmann , Zhongshan Jiang , Chi-Hsien Tang , Christopher W. Johnson , Da-Yi Chen , Hsin-Hua Huang , Miao Tang , Xinghai Yang
{"title":"台湾水文诱发的地应力变化及其与地震活动性的关系","authors":"Ya-Ju Hsu ,&nbsp;Roland Bürgmann ,&nbsp;Zhongshan Jiang ,&nbsp;Chi-Hsien Tang ,&nbsp;Christopher W. Johnson ,&nbsp;Da-Yi Chen ,&nbsp;Hsin-Hua Huang ,&nbsp;Miao Tang ,&nbsp;Xinghai Yang","doi":"10.1016/j.epsl.2024.119181","DOIUrl":null,"url":null,"abstract":"<div><div>Studying crustal stress changes associated with hydrological cycles and their influence on seismicity rate illuminates the complex interplay between crustal stress conditions, faulting orientations, and earthquake nucleation. By analyzing GNSS position time series in 2006–2021 across Taiwan, we reveal a prevailing NW-SE trending seasonal contraction and expansion of the Earth's crust in response to hydrological loading and unloading in SW Taiwan, consistent with the maximum annual water storage change inferred from hydrological data. Inspection of seismicity rates in SW Taiwan indicates a positive correlation between excess seismicity rate and reduced NW-SE compression and/or decreasing vertical loading. Though hydrologically-induced contraction aligns with the tectonic compressive stress axis in the wet season, this alignment does not lead to more frequent earthquakes during peak water storage. Instead, seismicity peaks during the dry months, coinciding with maximum uplift and water unloading. This suggests that hydrologically-induced vertical stress or pressure changes play the dominant role in triggering earthquakes, as evidenced by vertical stress amplitudes 2∼4 times greater than the horizontal stress changes. The statistical correlation evaluating the timing of earthquakes and hydrologically-induced stress changes further affirms that the seismicity rate increases with reduced tectonic compression and enhanced vertical unloading in SW Taiwan. The observed relationship also implies the earthquake nucleation time is comparable to the stressing period of annual water cycles in SW Taiwan. Hydrologically-triggered earthquakes appear to be more sensitive to pressure variations than to shear stress changes, similar to tidally-modulated seismicity.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119181"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrologically-induced crustal stress changes and their association with seismicity rates in Taiwan\",\"authors\":\"Ya-Ju Hsu ,&nbsp;Roland Bürgmann ,&nbsp;Zhongshan Jiang ,&nbsp;Chi-Hsien Tang ,&nbsp;Christopher W. Johnson ,&nbsp;Da-Yi Chen ,&nbsp;Hsin-Hua Huang ,&nbsp;Miao Tang ,&nbsp;Xinghai Yang\",\"doi\":\"10.1016/j.epsl.2024.119181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studying crustal stress changes associated with hydrological cycles and their influence on seismicity rate illuminates the complex interplay between crustal stress conditions, faulting orientations, and earthquake nucleation. By analyzing GNSS position time series in 2006–2021 across Taiwan, we reveal a prevailing NW-SE trending seasonal contraction and expansion of the Earth's crust in response to hydrological loading and unloading in SW Taiwan, consistent with the maximum annual water storage change inferred from hydrological data. Inspection of seismicity rates in SW Taiwan indicates a positive correlation between excess seismicity rate and reduced NW-SE compression and/or decreasing vertical loading. Though hydrologically-induced contraction aligns with the tectonic compressive stress axis in the wet season, this alignment does not lead to more frequent earthquakes during peak water storage. Instead, seismicity peaks during the dry months, coinciding with maximum uplift and water unloading. This suggests that hydrologically-induced vertical stress or pressure changes play the dominant role in triggering earthquakes, as evidenced by vertical stress amplitudes 2∼4 times greater than the horizontal stress changes. The statistical correlation evaluating the timing of earthquakes and hydrologically-induced stress changes further affirms that the seismicity rate increases with reduced tectonic compression and enhanced vertical unloading in SW Taiwan. The observed relationship also implies the earthquake nucleation time is comparable to the stressing period of annual water cycles in SW Taiwan. Hydrologically-triggered earthquakes appear to be more sensitive to pressure variations than to shear stress changes, similar to tidally-modulated seismicity.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"651 \",\"pages\":\"Article 119181\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24006137\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24006137","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

研究与水文循环相关的地应力变化及其对地震活动性的影响,揭示了地应力条件、断层走向和地震成核之间复杂的相互作用。通过对2006-2021年台湾地区GNSS位置时间序列的分析,我们发现台湾西南部地壳在水文加载和卸载过程中普遍呈现NW-SE趋势的季节性收缩和扩张,这与水文数据推断的最大年储水量变化一致。对台湾西南部地震活动性率的考察表明,地震活动性过高与北西-东西压缩减少和/或垂向载荷减少呈正相关。虽然水文引起的收缩在雨季与构造压应力轴一致,但这种对齐并不会导致在储水高峰期间更频繁的地震。相反,地震活动在干旱月份达到高峰,与最大的隆起和水卸载相一致。这表明,水文诱发的垂直应力或压力变化在引发地震中起主导作用,垂直应力振幅比水平应力变化大2 ~ 4倍。地震发生时间与水文应力变化的统计相关性进一步证实了台湾西南部地震活动性随构造压缩减小和垂直卸荷增强而增加。地震成核时间与台湾西南部年水循环的应力期相当。水文引发的地震似乎对压力变化比剪切应力变化更敏感,类似于潮汐调制的地震活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrologically-induced crustal stress changes and their association with seismicity rates in Taiwan
Studying crustal stress changes associated with hydrological cycles and their influence on seismicity rate illuminates the complex interplay between crustal stress conditions, faulting orientations, and earthquake nucleation. By analyzing GNSS position time series in 2006–2021 across Taiwan, we reveal a prevailing NW-SE trending seasonal contraction and expansion of the Earth's crust in response to hydrological loading and unloading in SW Taiwan, consistent with the maximum annual water storage change inferred from hydrological data. Inspection of seismicity rates in SW Taiwan indicates a positive correlation between excess seismicity rate and reduced NW-SE compression and/or decreasing vertical loading. Though hydrologically-induced contraction aligns with the tectonic compressive stress axis in the wet season, this alignment does not lead to more frequent earthquakes during peak water storage. Instead, seismicity peaks during the dry months, coinciding with maximum uplift and water unloading. This suggests that hydrologically-induced vertical stress or pressure changes play the dominant role in triggering earthquakes, as evidenced by vertical stress amplitudes 2∼4 times greater than the horizontal stress changes. The statistical correlation evaluating the timing of earthquakes and hydrologically-induced stress changes further affirms that the seismicity rate increases with reduced tectonic compression and enhanced vertical unloading in SW Taiwan. The observed relationship also implies the earthquake nucleation time is comparable to the stressing period of annual water cycles in SW Taiwan. Hydrologically-triggered earthquakes appear to be more sensitive to pressure variations than to shear stress changes, similar to tidally-modulated seismicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信